Advertisements
Advertisements
प्रश्न
Derive Poiseuille’s formula for the volume of a liquid flowing per second through a pipe under streamlined flow.
उत्तर
Consider a liquid flowing steadily through a horizontal capillary tube. Let v = `("V"/"t")` be the volume of the liquid flowing out per second through a capillary tube. It depends on (1) coefficient of viscosity (η) of the liquid, (2) radius of the tube (r), and (3) the pressure gradient `("P"/"l")`.
Then, `"v" ∝ η^"a""r"^"b"("P"/"l")^"c"`
v = `"k"η^"a""r"^"b"("P"/"l")^"c"` .............(1)
where, k is a dimensionless constant.
Therefore, [v] = `"volume"/"time" = ["L"^3"T"^-1], ["dP"/"dx"] = "Pressure"/"distance"`
`["Ml"^-2"T"^-2], [η] = ["M"^-1"T"^-1]` and `["r"] = ["L"]`
Substituting in equation (1)
`["L"^3"T"^-1] = ["ML"^-1"T"^-1]^"a" ["L"]^"b" ["ML"^-2"T"^-2]^"c"`
`"M"^0"L"^3"T"^-1 = "M"^("a" + "c") "L"^(-"a" + "b" - 2"c") "T"^(-"a" - 2"c")`
So, equating the powers of M, L, and T on both sides, we get
a + c = 0, −a + b −2c = 3, and −a −2c = −1
We have three unknowns a, b and c. We have three equations, on solving, we get
a = – 1, b = 4 and c = 1
Therefore, equation (1) becomes,
v = `"k"η^-1"r"^4("P"/"l")^1`
Experimentally, the value of k is shown to be `π/8`, we have
v = `(π"r"^4"P")/(8η"l")`
The above equation is known as Poiseuille’s equation for the flow of liquid through a narrow tube or a capillary tube. This relation holds good for the fluids whose velocities are lesser than the critical velocity (vc).
APPEARS IN
संबंधित प्रश्न
Fill in the blanks using the word(s) from the list appended with each statement
Viscosity of gases. .. with temperature, whereas viscosity of liquids . . . with temperature (increases / decreases)
A spherical ball is dropped in a long column of a viscous liquid. The speed of the ball as a function of time may be best represented by the graph
Which has greater viscosity, oil or honey? Why?
Choose the CORRECT statement.
Clouds float in the air due to ______.
The velocity of a small ball of mass M and density d, when dropped in a container filled with glycerine becomes constant after some time. If the density of glycerine is `"d"/2`, then the viscous force acting on the ball will be ______
With increase in temperature, the viscosity of ______.
- gases decreases.
- liquids increases.
- gases increases.
- liquids decreases.
An air bubble of negligible weight having radius r rises steadily through a solution of density σ at speed v. The coefficient of viscosity of the solution is given by ______.
A spherical solid ball of volume V is made of a material of density ρ1. It is falling through a liquid of density ρ2 (ρ2 < ρ1). Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed v, i.e., `"F"_"viscous"`= -kv2 (k > 0). The terminal speed of the ball is ______.
Define velocity gradient.