Advertisements
Advertisements
प्रश्न
Derive Poiseuille’s formula for the volume of a liquid flowing per second through a pipe under streamlined flow.
उत्तर
Consider a liquid flowing steadily through a horizontal capillary tube. Let v = `("V"/"t")` be the volume of the liquid flowing out per second through a capillary tube. It depends on (1) coefficient of viscosity (η) of the liquid, (2) radius of the tube (r), and (3) the pressure gradient `("P"/"l")`.
Then, `"v" ∝ η^"a""r"^"b"("P"/"l")^"c"`
v = `"k"η^"a""r"^"b"("P"/"l")^"c"` .............(1)
where, k is a dimensionless constant.
Therefore, [v] = `"volume"/"time" = ["L"^3"T"^-1], ["dP"/"dx"] = "Pressure"/"distance"`
`["Ml"^-2"T"^-2], [η] = ["M"^-1"T"^-1]` and `["r"] = ["L"]`
Substituting in equation (1)
`["L"^3"T"^-1] = ["ML"^-1"T"^-1]^"a" ["L"]^"b" ["ML"^-2"T"^-2]^"c"`
`"M"^0"L"^3"T"^-1 = "M"^("a" + "c") "L"^(-"a" + "b" - 2"c") "T"^(-"a" - 2"c")`
So, equating the powers of M, L, and T on both sides, we get
a + c = 0, −a + b −2c = 3, and −a −2c = −1
We have three unknowns a, b and c. We have three equations, on solving, we get
a = – 1, b = 4 and c = 1
Therefore, equation (1) becomes,
v = `"k"η^-1"r"^4("P"/"l")^1`
Experimentally, the value of k is shown to be `π/8`, we have
v = `(π"r"^4"P")/(8η"l")`
The above equation is known as Poiseuille’s equation for the flow of liquid through a narrow tube or a capillary tube. This relation holds good for the fluids whose velocities are lesser than the critical velocity (vc).
APPEARS IN
संबंधित प्रश्न
The force of viscosity is
The viscous force acting between two layers of a liquid is given by \[\frac{F}{A} = - \eta\frac{dv}{dz}\]. This F/A may be called
Distinguish between streamlined flow and turbulent flow.
A small metal sphere of mass M and density d1, when dropped in a jar filled with liquid moves with terminal velocity after sometime. The viscous force acting on the sphere is (d2 = density of liquid and g = gravitational acceleration)
An incompressible liquid flows through a unifonn cross sectional tube with velocity 20 cm/s. If the thickness of liquid layer is 0.8 cm then velocity of gradient of flow is ____________.
With increase in temperature, the viscosity of ______.
- gases decreases.
- liquids increases.
- gases increases.
- liquids decreases.
Is viscosity a vector?
The velocity of a small ball of mass 0.3 g and density 8 g/cc when dropped in a container filled with glycerine becomes constant after some time. If the density of glycerine is 1.3 g/cc, then the value of viscous force acting on the ball will be x × 10-4 N, and the value of x is ______.
[use g = 10 m/s2]
An incompressible liquid is flowing through a uniform cross-sectional tube with a velocity 12 cm/ s. If the thickness of liquid layer is 0.8 cm, what is the velocity gradient of that flow of liquid?
State and explain Newton's law of viscosity.