मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Derive the expression for the terminal velocity of a sphere moving in a high viscous fluid using stokes force. - Physics

Advertisements
Advertisements

प्रश्न

Derive the expression for the terminal velocity of a sphere moving in a high viscous fluid using stokes force.

दीर्घउत्तर

उत्तर

Expression for terminal velocity: Consider a sphere of radius r which falls freely through a highly viscous liquid of coefficient of viscosity η. Let the density of the material of the sphere be ρ and the density of the fluid be σ.


Forces acting on the sphere when it falls in a viscous liquid

Gravitational force acting on the sphere,

FG = mg = `4/3π"r"^3ρ"g"` (downward force)

Upthrust, U = `4/3π"r"^3σ"g"` (upward force)

Viscous force, F = 6πηrvt

At terminal velocity vt,

Downward force = upward force

FG = U + F

FG − U = F ⇒ `4/3π"r"^3ρ"g" - 4/3π"r"^3σ"g"` = 6πηrvt

vt = `2/9 xx ("r"^2(ρ - σ))/η` g ⇒ `"v"_"t" ∝ "r"^2`

Here, it should be noted that the terminal speed of the sphere is directly proportional to the square of its radius. If a is greater than ρ, then the term (ρ – σ) becomes negative leading to a negative terminal velocity.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Properties of Matter - Evaluation [पृष्ठ ९२]

APPEARS IN

सामाचीर कलवी Physics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 7 Properties of Matter
Evaluation | Q III. 7. | पृष्ठ ९२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×