Advertisements
Advertisements
प्रश्न
Determine whether the points are collinear.
L(–2, 3), M(1, –3), N(5, 4)
उत्तर
L(–2, 3), M(1, –3), N(5, 4)
According to distance formula,
d(L, M) = `sqrt((x_2 – x_1)^2 + (y_2 – y_1)^2)`
d(L, M) = `sqrt([1 – (–2)]^2 + (–3 – 3)^2)`
d(L, M) = `sqrt((1 + 2)^2 + (–3 – 3)^2)`
d(L, M) = `sqrt((3)^2 + (–6)^2)`
d(L, M) = `sqrt(9 + 36)`
d(L, M) = `sqrt(45)`
d(L, M) = `sqrt(9 × 5)`
∴ d(L, M) = `3sqrt(5)` ...(1)
d(M, N) = `sqrt((x_2 – x_1)^2 + (y_2 – y_1)^2)`
d(M, N) = `sqrt((5 – 1)^2 + [4 – (– 3)]^2)`
d(M, N) = `sqrt((5 – 1)^2 + (4 + 3)^2)`
d(M, N) = `sqrt((4)^2 + (7)^2)`
d(M, N) = `sqrt(16 + 49)`
∴ d(M, N) = `sqrt(65)` ...(2)
d(L, N) = `sqrt((x_2 – x_1)^2 + (y_2 – y_1)^2)`
d(L, N) = `sqrt([5 – (– 2)]^2 + (4 – 3)^2)`
d(L, N) = `sqrt((5 + 2)^2 + (4 – 3)^2)`
d(L, N) = `sqrt((7)^2 + (1)^2)`
d(L, N) = `sqrt(49 + 1)`
d(L, N) = `sqrt(50)`
d(L, N) = `sqrt(25 × 2)`
∴ d(L, N) = `5sqrt(2)` ...(3)
From (1), (2), and (3),
Sum of two sides is not equal to the third side.
Hence, the given points are not collinear.
APPEARS IN
संबंधित प्रश्न
If P and Q are two points whose coordinates are (at2 ,2at) and (a/t2 , 2a/t) respectively and S is the point (a, 0). Show that `\frac{1}{SP}+\frac{1}{SQ}` is independent of t.
If the opposite vertices of a square are (1, – 1) and (3, 4), find the coordinates of the remaining angular points.
Name the type of quadrilateral formed, if any, by the following point, and give reasons for your answer:
(4, 5), (7, 6), (4, 3), (1, 2)
Find the distance between the points
(ii) A(7,-4)and B(-5,1)
Find all possible values of x for which the distance between the points
A(x,-1) and B(5,3) is 5 units.
Show that the ▢PQRS formed by P(2, 1), Q(–1, 3), R(–5, –3) and S(–2, –5) is a rectangle.
Find the value of y for which the distance between the points A (3, −1) and B (11, y) is 10 units.
Distance of point (-3, 4) from the origin is .....
(A) 7 (B) 1 (C) 5 (D) 4
Prove that the following set of point is collinear :
(4, -5),(1 , 1),(-2 , 7)
Find the coordinate of O , the centre of a circle passing through A (8 , 12) , B (11 , 3), and C (0 , 14). Also , find its radius.
Find the coordinates of O, the centre passing through A( -2, -3), B(-1, 0) and C(7, 6). Also, find its radius.
A(-2, -3), B(-1, 0) and C(7, -6) are the vertices of a triangle. Find the circumcentre and the circumradius of the triangle.
In what ratio does the point P(−4, y) divides the line segment joining the points A(−6, 10) and B(3, −8)? Hence find the value of y.
Calculate the distance between the points P (2, 2) and Q (5, 4) correct to three significant figures.
The distance between the points (0, 5) and (–5, 0) is ______.
A circle drawn with origin as the centre passes through `(13/2, 0)`. The point which does not lie in the interior of the circle is ______.
The distance between the point P(1, 4) and Q(4, 0) is ______.
If the distance between the points (x, -1) and (3, 2) is 5, then the value of x is ______.
Show that points A(–1, –1), B(0, 1), C(1, 3) are collinear.
The distance of the point (5, 0) from the origin is ______.