Advertisements
Advertisements
प्रश्न
Determine whether the points are collinear.
A(1, −3), B(2, −5), C(−4, 7)
उत्तर
A(1, −3), B(2, −5), C(−4, 7)
Let,
A(1, −3) = A(x1, y1)
B(2, −5) = B(x2, y2)
C(−4, 7) = C(x3, y3)
By distance formula,
d(A, B) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((2 - 1)^2 + [-5 - (-3)]^2)`
= `sqrt((1)^2 + (-5 + 3)^2)`
= `sqrt((1)^2 + (-2)^2)`
= `sqrt(1+ 4)`
= `sqrt(5)` ...(1)
d(B, C) = `sqrt((x_3 - x_2)^2 + (y_3 - y_2)^2)`
= `sqrt((- 4 - 2)^2 + [7 - (-5)]^2)`
= `sqrt((-6)^2 + [7 + 5]^2)`
= `sqrt((-6)^2 + (12)^2)`
= `sqrt(36 + 144)`
= `sqrt(180)`
= `sqrt(36 × 5)`
= `6sqrt(5)` ...(2)
d(A, C) = `sqrt((x_3 - x_1)^2 + (y_3 - y_1)^2)`
= `sqrt((-4 - 1)^2 + [7 - (-3)]^2)`
= `sqrt((-4 - 1)^2 + (7 + 3)^2)`
= `sqrt((-5)^2 + (10)^2)`
= `sqrt(25 + 100)`
= `sqrt(125)`
= `sqrt(25 × 5)`
= `5sqrt(5)` ...(3)
Adding (1) and (3)
∴ d(A, B) + d(A, C) = d(B, C)
∴ `sqrt5 + 5sqrt5 = 6sqrt5` ...(4)
∴ d(A, B) + d(A, C) = d(B, C) ...[From (2) and (4)]
∴ Points A(1, −3), B(2, −5) and C(−4, 7) are collinear.
APPEARS IN
संबंधित प्रश्न
If A(4, 3), B(-1, y) and C(3, 4) are the vertices of a right triangle ABC, right-angled at A, then find the value of y.
If the point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also, find the length of AB.
If the opposite vertices of a square are (1, – 1) and (3, 4), find the coordinates of the remaining angular points.
If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?
Find the distance between the points
A(-6,-4) and B(9,-12)
Using the distance formula, show that the given points are collinear:
(-2, 5), (0,1) and (2, -3)
AB and AC are the two chords of a circle whose radius is r. If p and q are
the distance of chord AB and CD, from the centre respectively and if
AB = 2AC then proove that 4q2 = p2 + 3r2.
Find the distance of the following point from the origin :
(8 , 15)
Find the distance of the following point from the origin :
(13 , 0)
P and Q are two points lying on the x - axis and the y-axis respectively . Find the coordinates of P and Q if the difference between the abscissa of P and the ordinates of Q is 1 and PQ is 5 units.
Prove that the points (7 , 10) , (-2 , 5) and (3 , -4) are vertices of an isosceles right angled triangle.
Prove that the points (0 , 2) , (1 , 1) , (4 , 4) and (3 , 5) are the vertices of a rectangle.
ABCD is a square . If the coordinates of A and C are (5 , 4) and (-1 , 6) ; find the coordinates of B and D.
Find the distance between the origin and the point:
(8, -15)
What point on the x-axis is equidistant from the points (7, 6) and (-3, 4)?
Given A = (x + 2, -2) and B (11, 6). Find x if AB = 17.
Show that the points (0, –1), (8, 3), (6, 7) and (– 2, 3) are vertices of a rectangle.
Ayush starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter’s school and then reaches the office. What is the extra distance travelled by Ayush in reaching his office? (Assume that all distances covered are in straight lines). If the house is situated at (2, 4), bank at (5, 8), school at (13, 14) and office at (13, 26) and coordinates are in km.
In a GPS, The lines that run east-west are known as lines of latitude, and the lines running north-south are known as lines of longitude. The latitude and the longitude of a place are its coordinates and the distance formula is used to find the distance between two places. The distance between two parallel lines is approximately 150 km. A family from Uttar Pradesh planned a round trip from Lucknow (L) to Puri (P) via Bhuj (B) and Nashik (N) as shown in the given figure below. |
Based on the above information answer the following questions using the coordinate geometry.
- Find the distance between Lucknow (L) to Bhuj (B).
- If Kota (K), internally divide the line segment joining Lucknow (L) to Bhuj (B) into 3 : 2 then find the coordinate of Kota (K).
- Name the type of triangle formed by the places Lucknow (L), Nashik (N) and Puri (P)
[OR]
Find a place (point) on the longitude (y-axis) which is equidistant from the points Lucknow (L) and Puri (P).
Show that Alia's house, Shagun's house and library for an isosceles right triangle.