Advertisements
Advertisements
प्रश्न
Determine whether the points are collinear.
A(1, −3), B(2, −5), C(−4, 7)
उत्तर
A(1, −3), B(2, −5), C(−4, 7)
Let,
A(1, −3) = A(x1, y1)
B(2, −5) = B(x2, y2)
C(−4, 7) = C(x3, y3)
By distance formula,
d(A, B) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((2 - 1)^2 + [-5 - (-3)]^2)`
= `sqrt((1)^2 + (-5 + 3)^2)`
= `sqrt((1)^2 + (-2)^2)`
= `sqrt(1+ 4)`
= `sqrt(5)` ...(1)
d(B, C) = `sqrt((x_3 - x_2)^2 + (y_3 - y_2)^2)`
= `sqrt((- 4 - 2)^2 + [7 - (-5)]^2)`
= `sqrt((-6)^2 + [7 + 5]^2)`
= `sqrt((-6)^2 + (12)^2)`
= `sqrt(36 + 144)`
= `sqrt(180)`
= `sqrt(36 × 5)`
= `6sqrt(5)` ...(2)
d(A, C) = `sqrt((x_3 - x_1)^2 + (y_3 - y_1)^2)`
= `sqrt((-4 - 1)^2 + [7 - (-3)]^2)`
= `sqrt((-4 - 1)^2 + (7 + 3)^2)`
= `sqrt((-5)^2 + (10)^2)`
= `sqrt(25 + 100)`
= `sqrt(125)`
= `sqrt(25 × 5)`
= `5sqrt(5)` ...(3)
Adding (1) and (3)
∴ d(A, B) + d(A, C) = d(B, C)
∴ `sqrt5 + 5sqrt5 = 6sqrt5` ...(4)
∴ d(A, B) + d(A, C) = d(B, C) ...[From (2) and (4)]
∴ Points A(1, −3), B(2, −5) and C(−4, 7) are collinear.
APPEARS IN
संबंधित प्रश्न
Prove that the points (–3, 0), (1, –3) and (4, 1) are the vertices of an isosceles right angled triangle. Find the area of this triangle
If P (2, – 1), Q(3, 4), R(–2, 3) and S(–3, –2) be four points in a plane, show that PQRS is a rhombus but not a square. Find the area of the rhombus
Find the distance between the points (0, 0) and (36, 15). Can you now find the distance between the two towns A and B discussed in Section 7.2.
Find the centre of the circle passing through (6, -6), (3, -7) and (3, 3)
Find all possible values of y for which distance between the points is 10 units.
The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is ______.
Prove that the following set of point is collinear :
(5 , 5),(3 , 4),(-7 , -1)
Prove that the points (0 , -4) , (6 , 2) , (3 , 5) and (-3 , -1) are the vertices of a rectangle.
Show that the points (2, 0), (–2, 0), and (0, 2) are the vertices of a triangle. Also, a state with the reason for the type of triangle.
Find the distance between the origin and the point:
(-8, 6)
Find the distance between the origin and the point:
(-5, -12)
The distances of point P (x, y) from the points A (1, - 3) and B (- 2, 2) are in the ratio 2: 3.
Show that: 5x2 + 5y2 - 34x + 70y + 58 = 0.
Find the distance of the following points from origin.
(a+b, a-b)
Using distance formula decide whether the points (4, 3), (5, 1), and (1, 9) are collinear or not.
If the distance between the points (x, -1) and (3, 2) is 5, then the value of x is ______.
Case Study -2
A hockey field is the playing surface for the game of hockey. Historically, the game was played on natural turf (grass) but nowadays it is predominantly played on an artificial turf.
It is rectangular in shape - 100 yards by 60 yards. Goals consist of two upright posts placed equidistant from the centre of the backline, joined at the top by a horizontal crossbar. The inner edges of the posts must be 3.66 metres (4 yards) apart, and the lower edge of the crossbar must be 2.14 metres (7 feet) above the ground.
Each team plays with 11 players on the field during the game including the goalie. Positions you might play include -
- Forward: As shown by players A, B, C and D.
- Midfielders: As shown by players E, F and G.
- Fullbacks: As shown by players H, I and J.
- Goalie: As shown by player K.
Using the picture of a hockey field below, answer the questions that follow:
The point on y axis equidistant from B and C is ______.
If (a, b) is the mid-point of the line segment joining the points A(10, –6) and B(k, 4) and a – 2b = 18, find the value of k and the distance AB.
The centre of a circle is (2a, a – 7). Find the values of a if the circle passes through the point (11, – 9) and has diameter `10sqrt(2)` units.
Find the distance between the points O(0, 0) and P(3, 4).
Read the following passage:
Alia and Shagun are friends living on the same street in Patel Nagar. Shagun's house is at the intersection of one street with another street on which there is a library. They both study in the same school and that is not far from Shagun's house. Suppose the school is situated at the point O, i.e., the origin, Alia's house is at A. Shagun's house is at B and library is at C. |
Based on the above information, answer the following questions.
- How far is Alia's house from Shagun's house?
- How far is the library from Shagun's house?
- Show that for Shagun, school is farther compared to Alia's house and library.
OR
Show that Alia’s house, shagun’s house and library for an isosceles right triangle.