हिंदी

Diagonals Ac and Bd of a Quadrilateral Abcd Intersect Each Other at P. Show That: Ar(δApb) × Ar(δCpd) = Ar(δApd) × Ar (δBpc) - Mathematics

Advertisements
Advertisements

प्रश्न

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that:
ar(ΔAPB) × ar(ΔCPD) = ar(ΔAPD) × ar (ΔBPC)

उत्तर

Construction: Draw BQ ⊥ AC and DR ⊥ AC

Proof:
L.H.S
 = ar (Δ APB ) × ar (ΔCP) 

 = `1/2[ ( AP xx BQ )] xx (1/2 xx PC xx DR)`

 =`( 1/2 xx PC xx BQ )xx (1/2 xx AP xx DR)` 

 = ar (Δ BPC )  × ar (APR)

 = RHS

 ∴ LHS = RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Areas of Parallelograms and Triangles - Exercise 14.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 14 Areas of Parallelograms and Triangles
Exercise 14.3 | Q 16 | पृष्ठ ४६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×