हिंदी

If P is Any Point in the Interior of a Parallelogram Abcd, Then Prove that Area of the Triangle Apb is Less than Half the Area of Parallelogram. - Mathematics

Advertisements
Advertisements

प्रश्न

If P is any point in the interior of a parallelogram ABCD, then prove that area of the
triangle APB is less than half the area of parallelogram.

उत्तर

 

Draw DN ⊥ AB and PM ⊥ AB.
Now,

`Area  (ΙΙ^(gm) ABCD) = AB xx DN , ar (ΔAPB ) = 1/2 (AB xx PM)`

Now , PM < DN

⇒  `AB xx PM < AB xx DN` 

⇒  ` 1/2 (AB xx PM) < 1/2 (AB xx DN)`

⇒  `Area ( ΔAPB ) <1/2 ar ( Parragram ABCD)` 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Areas of Parallelograms and Triangles - Exercise 14.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 14 Areas of Parallelograms and Triangles
Exercise 14.3 | Q 17 | पृष्ठ ४६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×