हिंदी

Do magnetic forces obey Newton’s third law. Verify for two current elements dl1 = dlî located at the origin and dl2 = dlĵ located at (0, R, 0). Both carry current I. - Physics

Advertisements
Advertisements

प्रश्न

Do magnetic forces obey Newton’s third law. Verify for two current elements dl1 = dlî located at the origin and dl2 = dlĵ located at (0, R, 0). Both carry current I.

टिप्पणी लिखिए

उत्तर

In this problem first, we have to find the direction of magnetic field due to one wire at the point on another wire, then the magnetic force on that current carrying wire.

According to Biot-Savart’s law, magnetic field B is parallel to idl × r and idl is the current carrying element having its direction along the direction of flow of current.

Here, for the direction of magnetic field, at dl2, located at (0, R, 0) due to wire dlx is given by B || idl × r or i × j (because point (0, R, 0) lies ony-axis), but i x j = k.

So, the direction of magnetic field at dl2 is along the z-direction.

The direction of magnetic force exerted at dl2 due to the magnetic field of first wire is along the x-axis.

F-i(l × B), i.e., F||(i × k) or along – j direction.

Therefore, force due to dl1 on dl2 is non-zero.

Now, for the direction of magnetic field, at dx, located at (0, 0, 0) due to wire d2 is given by B || idl × r or j × – j (because origin lies on y-direction w.r.t. point (0, R, 0), but j × – j = 0.

So, the magnetic field at dx does not exist.

Force due to dl2 on dl1, is zero.

So, magnetic forces do not obey Newton’s third law. But they obey Newton’s third law if current-carrying elements is placed parallel to each other.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Moving Charges And Magnetism - MCQ I [पृष्ठ २५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
अध्याय 4 Moving Charges And Magnetism
MCQ I | Q 4.2 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

An electron beam projected along the positive x-axis deflects along the positive y-axis. If this deflection is caused by a magnetic field, what is the direction of the field? Can we conclude that the field is parallel to the z-axis?


A long, straight wire carries a current along the z-axis, One can find two points in the xy plane such that
(a) the magnetic fields are equal
(b) the directions of the magnetic fields are the same
(c) the magnitudes of the magnetic fields are equal
(d) the field at one point is opposite to that at the other point.


A long, straight wire carrying a current of 1.0 A is placed horizontally in a uniform magnetic field B = 1.0 × 10−5 T pointing vertically upward figure. Find the magnitude of the resultant magnetic field at the points P and Q, both situated at a distance of 2.0 cm from the wire in the same horizontal plane. 



The magnetic field existing in a region is given by  `vecB = B_0(1 + x/1)veck` . A square loop of edge l and carrying a current i, is placed with its edges parallel to the xy axes. Find the magnitude of the net magnetic force experienced by the loop.


Figure shows a metallic wire of resistance 0.20 Ω sliding on a horizontal, U-shaped metallic rail. The separation between the parallel arms is 20 cm. An electric current of 2.0 µA passes through the wire when it is slid at a rate of 20 cm s−1. If the horizontal component of the earth's magnetic field is 3.0 × 10−5 T, calculate the dip at the place.


Two parallel wires carry equal currents of 10 A along the same direction and are separated by a distance of 2.0 cm. Find the magnetic field at a point which is 2.0 cm away from each of these wires.


Four long, straight wires, each carrying a current of 5.0 A, are placed in a plane as shown in figure. The points of intersection form a square of side 5.0 cm.
(a) Find the magnetic field at the centre P of the square.
(b) Q1, Q2, Q3, and Q4, are points situated on the diagonals of the square and at a distance from P that is equal to the diagonal of the square. Find the magnetic fields at these points. 


Consider a 10-cm long piece of a wire which carries a current of 10 A. Find the magnitude of the magnetic field due to the piece at a point which makes an equilateral triangle with the ends of the piece.


If a current I is flowing in a straight wire parallel to x-axis and magnetic field is there in the y-axis then, ______.


Which of the following is true?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×