Advertisements
Advertisements
प्रश्न
Draw labelled graphs to show how electrical resistance varies with temperature for:
1) a metallic wire.
2) a piece of carbon
उत्तर
APPEARS IN
संबंधित प्रश्न
Is work done by a battery always equal to the thermal energy developed in electrical circuit? What happens if a capacitor is connected in the circuit?
Two resistors R and 2R are connected in series in an electric circuit. The thermal energy developed in R and 2R are in the ratio ______________ .
When a current passes through a resistor, its temperature increases. Is it an adiabatic process?
Is neutral temperature always the arithmetic mean of the inversion temperature and the temperature of the cold junction? Does the unit of temperature have an effect in deciding this question?
Consider the following statements regarding a thermocouple.
(A) The neutral temperature does not depend on the temperature of the cold junction.
(B) The inversion temperature does not depend on the temperature of the cold junction.
The constants a and b for the pair silver-lead are 2.50 μV°C−1 and 0.012μV°C−2, respectively. For a silver-lead thermocouple with colder junction at 0°C, ______________ .
(a) there will be no neutral temperature
(b) there will be no inversion temperature
(c) there will not be any thermo-emf even if the junctions are kept at different temperatures
(d) there will be no current in the thermocouple even if the junctions are kept at different temperatures
Find the thermo-emf developed in a copper-silver thermocouple when the junctions are kept at 0°C and 40°C. Use the data given in the following table.
Metal with lead (Pb) |
a `mu V"/"^oC` |
b `muV"/("^oC)` |
Aluminium | -0.47 | 0.003 |
Bismuth | -43.7 | -0.47 |
Copper | 2.76 | 0.012 |
Gold | 2.90 | 0.0093 |
Iron | 16.6 | -0.030 |
Nickel | 19.1 | -0.030 |
Platinum | -1.79 | -0.035 |
Silver | 2.50 | 0.012 |
Steel | 10.8 | -0.016 |
Define temperature coefficient of resistance of the material of a conductor.
By increasing the temperature, the specific resistance of a conductor and a semiconductor -