Advertisements
Advertisements
प्रश्न
Draw an ogive for the following :
Class Interval | 100-150 | 150-200 | 200-250 | 250-300 | 300-350 | 350-400 |
Frequency | 10 | 13 | 17 | 12 | 10 | 8 |
उत्तर
Steps :
1. On the x-axis , take 1 cm as 5 units and plot class interval.
2. On the y-axis , take 1 cm as 5 units and plot frequency.
3. plot the points with coordinates having abscissae as actual limits and ordinates as the cumulative frequencies . In this case (150,10),(200,23),(250,40)(300,52)(350,62),(400,70).
4. Join the points plotted by a smooth curve.
less than | Cumulative Frequency |
150 | 10 |
200 | 23 |
250 | 40 |
300 | 52 |
350 | 62 |
400 | 70 |
APPEARS IN
संबंधित प्रश्न
The daily wages of 80 workers in a project are given below.
Wages (in Rs.) |
400-450 | 450-500 | 500-550 | 550-600 | 600-650 | 650-700 | 700-750 |
No. of workers |
2 | 6 | 12 | 18 | 24 | 13 | 5 |
Use a graph paper to draw an ogive for the above distribution. (Use a scale of 2 cm = Rs. 50 on x-axis and 2 cm = 10 workers on y-axis). Use your ogive to estimate:
- the median wage of the workers.
- the lower quartile wage of workers.
- the numbers of workers who earn more than Rs. 625 daily.
Draw an ogive by less than method for the following data:
No. of rooms: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
No. of houses: | 4 | 9 | 22 | 28 | 24 | 12 | 8 | 6 | 5 | 2 |
The following table gives the height of trees:
Height | No. of trees |
Less than 7 Less than 14 Less than 21 Less than 28 Less than 35 Less than 42 Less than 49 Less than 56 |
26 57 92 134 216 287 341 360 |
Draw 'less than' ogive and 'more than' ogive.
The following table gives production yield per hectare of wheat of 100 farms of a village:
Production yield in kg per hectare: | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 |
Number of farms: | 2 | 8 | 12 | 24 | 38 | 16 |
Draw ‘less than’ ogive and ‘more than’ ogive.
Draw a cumulative frequency curve (ogive) for the following distributions:
Class Interval | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
Frequency | 10 | 15 | 17 | 12 | 10 | 8 |
Construct a frequency distribution table for the following distributions:
Marks (more than) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative frequency | 100 | 87 | 65 | 55 | 42 | 36 | 31 | 21 | 18 | 7 | 0 |
Draw an ogive for the following :
Age in years | Less than 10 | Less than 20 | Less than 30 | Less than 40 | Less than 50 |
No. of people | 0 | 17 | 42 | 67 | 100 |
Prepare the cumulative frequency (less than types) table from the following distribution table :
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 2 | 3 | 7 | 8 | 5 |
The frequency distribution of scores obtained by 230 candidates in a medical entrance test is as ahead:
Cost of living Index | Number of Months |
400 - 450 | 20 |
450 - 500 | 35 |
500 - 550 | 40 |
550 - 600 | 32 |
600 - 650 | 24 |
650 - 700 | 27 |
700 - 750 | 18 |
750 - 800 | 34 |
Total | 230 |
Draw a cummulative polygon (ogive) to represent the above data.
Cumulative frequency curve is also called ______.