हिंदी

एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो - न तो एकैकी है और न आच्छादक है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

न तो एकैकी है और न आच्छादक है।

योग

उत्तर

मान लीजिए f: R → R, f(x) = xद्वारा परिभाषित एक प्रतिचित्रण है।

तब स्पष्ट रूप से f(x) एकैकी नहीं है क्योंकि f(1) = f(–1) है।

साथ ही f(x) का परिसर `[0, oo)` है। 

इसलिए, f(x) न तो एकैकी है और न ही आच्छादक।

shaalaa.com
संबंध एवं फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: संबंध एव फलन - प्रश्नावली [पृष्ठ १३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 1 संबंध एव फलन
प्रश्नावली | Q 19. (iii) | पृष्ठ १३

संबंधित प्रश्न

यदि f(x) = x2 तो `(f(1.1) - f(1))/((1.1 - 1))` ज्ञात कीजिए।


यदि f : R → R जहाँ f(x) = x2 - 3x + 2 द्वारा परिभाषित है तो f(f(x)) ज्ञात कीजिए |


मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

क्या R स्वतुल्य, सममित, संक्रामक है?


यदि f = {(5, 2), (6, 3)} तथा g = {(2, 5), (3, 6)}, तो f तथा g के परिसर लिखिए।


प्राकृत संख्याओं के समुच्चय N में m * n = g.c.d (m, n), m, n ∈ N द्वारा द्वि-आधारी- संक्रिया * परिभाषित कीजिए।क्या संक्रिया * कर्मविनिमेय तथा साहचर्य है?


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए, a * b = a – b


समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______


मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।


मान लीजिए कि A = {a, b, c} तथा A में परिभाषित संबंध R निम्नलिखित है:

R = {(a, a), (b, c), (a, b)}. तो उन क्रमित युग्मों की, कम से कम, संख्या लिखिए, जिनको R में जोड़ने से R स्वतुल्य तथा संक्रामक बन जाता है।


यदि A = {a, b, c, d} तथा फलन f = {(a, b), (b, d), (c, a), (d, c)} तो f –1 लिखिए।


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

g = {(1, 4), (2, 4), (3, 4)}


मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।

R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

एकैकी नहीं है किंतु आच्छादक है।


मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:

f(x) = `x/2`


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:

g(x) = |x|


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x बड़ा है y से, x, y ∈ N 

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x + y = 10, x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए:


समुच्चय A = {1, 2, 3} में तुल्यता संबंधों की अधिकतम संख्या ______ है।


मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।


Q ~ {0} में  a * b = ` (ab)/2` ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव ______ है।


यदि समुच्चय A में 5 अवयव हैं तथा समुच्चय B में 6 अवयव हैं, तो A से B में एकैकी तथा आच्छादक प्रतिचित्रणों की संख्या ______ है।


माना लीजिए कि A = {1, 2, 3, ...n} तथा B = {a, b}। तो A से B में आच्छादी प्रतिचित्रों (प्रतिचित्रणों) की संख्या _________ है।


मान लीजिए f: `[2, oo)` → R f(x) = x2 - 4x + 5 द्वारा परिभाषित फलन है, तो f का परिसर ______ है।


यदि f(x) = (4 - (x - 7)3}, तो f–1(x) = ______।


फलनों का संयोजन साहचर्य होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×