हिंदी

Q ~ {0} में a * b = ab2 ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

Q ~ {0} में  a * b = ` (ab)/2` ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव ______ है।

विकल्प

  • 1

  • 0

  • 2

  • इनमें से कोई नहीं है।

MCQ
रिक्त स्थान भरें

उत्तर

Q ~ {0} में  a * b = ` (ab)/2` ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव 2 है।

व्याख्या:

दिया गया है, a * b = `"ab"/2` ∀ a, b ∈ Q ~ {0} 

मान लीजिए कि * के लिए e पहचान तत्व है।

∴ a * e = `"ae"/2`

⇒ a = `"ae"/2`

⇒ e = 2

shaalaa.com
संबंध एवं फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: संबंध एव फलन - प्रश्नावली [पृष्ठ १५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 1 संबंध एव फलन
प्रश्नावली | Q 34 | पृष्ठ १५

संबंधित प्रश्न

मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

क्या R स्वतुल्य, सममित, संक्रामक है?


यदि f = {(5, 2), (6, 3)}, g = {(2, 5), (3, 6)}, तो f o g लिखिए।


क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है? 


प्राकृत संख्याओं के समुच्चय N में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:

∀ n, m ∈ N, nRm यदि n तथा में से प्रत्येक संख्या को 5 से विभाजित करने पर शेषफल 5 से कम बचता है, अर्थात, 0, 1, 2, 3 तथा 4 में से कोई एक संख्या। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही R द्वारा निर्धारित युगलत: असयुंक्त उप-समुच्चयों को भी ज्ञात कीजिए।


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए, a * b = a – b


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

 a, b ∈ Q के लिए a * b = `"ab"/4` 


मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R


समुच्चय A में 3 अवयव हैं तथा समुच्चय B में 4 अवयव हैं, तो A से B में परिभाषित एकैक प्रतिचित्रणों की संख्या


समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______


f (x) = `sqrt(x^2  –3x +2)`  द्वारा परिभषित फलन f : R → R का प्रांत ______ है। 


अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।


मान लीजिए कि Z पूर्णांकों का समुच्चय है तथा R, Z में परिभाषित एक संबंध इस प्रकार है aRb, कि यदि a – b भाज्य है 3 से, तो R समुच्चय Z को ______ युगलत: असंयुक्त उप-समुच्चयों में विभाजन करता है।


मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।


मान लीजिए कि f: R → R फलन f(x) = 2x – 3 ∀ x ∈ R द्वारा परिभाषित है। f–1 लिखिए।


यदि f : R → R, f (x) = x2 – 3x + 2 द्वारा परिभाषित है, तो f (f (x)) लिखिए।


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

h = {(1,4), (2, 5), (3, 5)}


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

k = {(1,4), (2, 5)}


यदि फलन f: A → B तथा g: B → A, g o f = IA को संतुष्ट करता हैं, तो सिद्ध कीजिए कि f एकैक है तथा g आच्छादक है।


मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।

R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।


दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :

A से B में एक ऐसा प्रतिचित्रण, जो एकैक नहीं है।


न लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:

k(x) = x2 


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x बड़ा है y से, x, y ∈ N 

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x + y = 10, x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


मान लीजिए कि R में द्वारा द्वि-आधारी *, a * b = 1 + ab, ∀ a, b ∈ R तो संक्रिया *


मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।


मान लीजिए कि f: R → R f(x) = tan x द्वारा दत्त है, तो f-1(1) _______ है।


एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×