Advertisements
Advertisements
प्रश्न
एक अंकगणितीय श्रृंखला का पहला पद −5 और अंतिम पद 45 है। यदि उन सभी पदों का योगफल 120 हो तो वे कितने पद होंगे? और उनका सामान्य अंतर कितना होगा?
उत्तर
यहाँ, a = t1 = −5, tn = 45 तथा Sn = 120
मानो कि, इस अंकगणितीय श्रृंखला में n पद हैं।
Sn = `"n"/2` [t1 + tn] .......(सूत्र)
∴ 120 = `"n"/2` [−5 + 45] ........(मान प्रतिस्थापित करने पर)
∴ 120 = `"n"/2 xx 40`
∴ 120 = 20n
∴ n = 6
∴ इस श्रृंखला में 6 पद हैं।
∵ Sn = `"n"/2 [2"a" + ("n" - 1)"d"]` .......(सूत्र)
∴ 120 = `6/2 [2 xx (-5) + (6 - 1) xx "d"]` ......(मान प्रतिस्थापित करने पर)
∴ 120 = 3 [−10 + 5d]
∴ 120 = −30 + 15d
∴ 120 + 30 = 15d
∴ 15d = 150
∴ d = 10
∴ श्रृंखला में 6 पद हैं तथा उनका सामान्य अंतर 10 है।
APPEARS IN
संबंधित प्रश्न
अंकगणितीय श्रृंखला 12, 16, 20, 24, ... दी गई है। इस श्रृंखला का 24 वाँ पद ज्ञात कीजिए।
निम्नलिखित अंकगणितीय श्रृंखला का 19वाँ पद ज्ञात कीजिए।
7, 13, 19, 25, ...
11, 8, 5, 2, ... इस अंकगणितीय श्रृंखला मेंं संख्या −151 कौन-से क्रमांक का पद होगा?
10 से 250 तक की प्राकृत संख्याओं मेंं कितनी संख्याएँ 4 से विभाज्य है?
किसी अंकगणितीय श्रृंखला का 17 वाँ पद उसके 10 वें पद से अधिक हो तो सामान्य अंतर ज्ञात कीजिए।
15, 10, 5, ... इस अंकगणितीय श्रृंखला के प्रथम 10 पदों का योगफल __________ है।
एक अंकगणितीय श्रृंखला का 10 वाँ पद 46 है 5 वें तथा 7 वें पदों का योगफल 52 हो तो वह श्रृंखला ज्ञात कीजिए।
यदि किसी अंकगणितीय श्रृंखला के तीसरे तथा 8 वें पदों का योगफल 7 हो और 7 वें तथा 14 वें पदों का योगफल −3 हो तो 10 वाँ पद ज्ञात कीजिए।
किसी अंकगणितीय श्रृंखला का द्वितीय तथा तृतीय पद ज्ञात करो, जिसका प्रथम पद 6 तथा सामान्य अंतर -3 हो।
निम्नलिखित अंकगणितीय श्रृंखला का 9 वाँ पद॑ ज्ञात करने के लिए निम्न कृतिं को पूर्ण करो:
कृति:
दी गई अंकगणितीय श्रृंखला: 7, 13, 19, 25, ........
यहाँ, प्रथम पद a = 7; t19 = ?
tn = a + (`square`)d ........ (सूत्र)
∴ t19 = 7 + (19 – 1) `square`
∴ t19 = 7 + `square`
∴ t19 = `square`