Advertisements
Advertisements
प्रश्न
एक A.P. में 50 पद हैं, जिसका तीसरा पद 12 है और अंतिम पद 106 है। इसका 29वाँ पद ज्ञात कीजिए।
उत्तर
दिया गया है कि,
a3 = 12
a50 = 106
हम जानते हैं कि,
an = a + (n − 1)d
a3 = a + (3 − 1)d
12 = a + 2d ...(i)
इसी प्रकार, a50 = a + (50 − 1)d
106 = a + 49d ...(ii)
(i) को (ii) से घटाने पर, हमें प्राप्त होता है
94 = 47d
d = 2
समीकरण (i) से, हमें प्राप्त होता है
12 = a + 2(2)
a = 12 − 4
a = 8
a29 = a + (29 − 1)d
a29 = 8 + (28)2
a29 = 8 + 56
a29 = 64
इसलिए, 29वाँ पद 64 है।
APPEARS IN
संबंधित प्रश्न
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = 10, d = 10
निम्नलिखित में सही उत्तर चुनिए और उसका औचित्य दीजिए:
A.P.: 10, 7, 4, ..., का 30 वाँ पद है:
निम्नलिखित समांतर श्रेढि में रिक्त खान (box) के पद को ज्ञात कीजिए।
`square, 13, square, 3`
A.P.: 3, 15, 27, 39, … का कौन-सा पद उसके 54वें पद से 132 अधिक होगा?
वह A.P. ज्ञात कीजिए जिसका तीसरा पद 16 है और 7वाँ पद 5वें पद से 12 अधिक है।
दर्शाइए कि a1, a2,…,an,.... से एक A.P. बनाती है, यदि an नीचे दिए अनुसार परिभाषित हैं:
an = 3 + 4n
साथ ही, ऊपर दिए गए स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
यदि किसी AP का सार्व अंतर 5 है, तो a18 – a13 क्या है?
AP: –11, –8, –5, ..., 49 के अंत से चौथा पद ______ है।
किसी AP के 5 वें और 7 वें पदों का योग 52 है तथा 10 वाँ पद 46 है। वह AP ज्ञात कीजिए।
10 और 300 के बीच में स्थित ऐसी कितनी संख्याएँ हैं, जिनको 4 से भाग देने पर शेषफल 3 रहता है?