हिंदी

एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई 8 सेमी है और इसके ऊपरी सिरे (जो खुला हुआ है) की त्रिज्या 5 सेमी है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई 8 सेमी है और इसके ऊपरी सिरे (जो खुला हुआ है) की त्रिज्या 5 सेमी है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक 0.5 सेमी त्रिज्या वाला एक गोला है, डाली जाती है, तो इसमें से भरे हुए पानी का एक चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।

योग

उत्तर

शंक्वाकार बर्तन की ऊँचाई (h) = 8 cm

शंक्वाकार बर्तन की त्रिज्या (r1) = 5 सेमी

सीसे की गोलियों की त्रिज्या (r2) = 0.5 cm

मान लीजिए कि जहाज में कई सीसे की गोलियों को गिराए गए थे।

शंक्वाकार बर्तन में पानी का आयतन = `1/3 piR^2 h`

= `1/3 xx 22/7 xx (5) xx 8`

= `4400/21`cm3

अब, सीसे की गोलियों की कुल मात्रा = `1/4` [शंकु में पानी की मात्रा]

= `1/4 xx 4400/21`

= `1100/21` cm3

चूँकि, गोलाकार सीसे की गोलियों की त्रिज्या (r)

= 0.5 cm

= `5/10`cm3

∴ एक सीसे का आयतन = `4/3 pi r^3`

= `(4/3 xx 22/7 xx 5/10 xx 5/10 xx 5/10)` cm3

सीसे की गोलियों की संख्या = `"सीसे की कुल मात्रा"/"एक सीसे की मात्रा"`

= `(1100/21)/((4 xx 22 xx 5 xx 5 xx 5)/(3 xx 7xx 1000))`

= 100 

इसलिए, बर्तन में गिराए गए सीसे की गोलियों की संख्या 100 है।

shaalaa.com
ठोसों के संयोजन का आयतन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: पृष्ठीय क्षेत्रफल और आयतन - प्रश्नावली 13.2 [पृष्ठ २७२]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 13 पृष्ठीय क्षेत्रफल और आयतन
प्रश्नावली 13.2 | Q 5. | पृष्ठ २७२

संबंधित प्रश्न

एक घनाकार ब्लॉक के एक फलक को अंदर की ओर से काट कर एक अर्धगोलाकार गड्ढ़ा इस प्रकार बनाया गया है कि अर्धगोले का व्यास घन के एक किनारे के बराबर है। शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।


एक ठोस एक अर्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ 1 सेमी हैं तथा शंकु की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन π के पदों में ज्ञात कीजिए।


एक 22 cm आंतरिक किनारे वाले खोखले घन को 0.5 cm व्यास वाले गोलाकार कंचों से भरा जाता है तथा यह कल्पना की जाती है कि घन का `1/8` स्थान भरा नहीं जा सकता है। तब घन में समावेशित होने वाले कंचों की संख्या ______ है।


दवाई का एक कैप्सूल 0.5 cm व्यास वाले एक बेलन के आकार का है, जिसके दोनों सिरों पर दो अर्धगोले लगे हुए हैं। संपूर्ण कैप्सूल की लंबाई 2 cm है। इस कैप्सूल की धारिता ______ है।


भुजा a वाले एक घनाकार बक्से के अंदर एक ठोस गेंद पूर्णतया ठीक-ठीक रखी जा सकती है। गेंद का आयतन `4/3πa^3` है।


एक 3 cm, 4 cm और 5 cm किनारों वाले धातु के तीन ठोस घनों को पिघलाकर एक अकेला घन बनाया गया है। इस प्रकार बने घन का किनारा ज्ञात कीजिए।


त्रिज्या 8 cm और ऊँचाई 12 cm वाले एक शंकु को उसकी अक्ष के मध्य-बिंदु से होकर जाने वाले और आधार के समांतर तल द्वारा दो भागों में विभाजित किया जाता है। दोनों भागों के आयतनों का अनपात ज्ञात कीजिए।


एक 7 cm व्यास वाले बेलनाकार बीकर, जिसमें कुछ पानी भरा है, में 1.4 cm व्यास वाले कंचे डाले जाते हैं। कंचों की वह संख्या ज्ञात कीजिए जिनको बीकर में डालने से पानी का स्तर 5.6 cm ऊपर उठ जायेगा।


आधार व्यास 1.5 cm और ऊँचाई 0.2 cm वाली धातु की वृत्ताकार चकतियों की संख्या ज्ञात कीजिए जिनको पिघलाकर 10 cm ऊँचाई और 4.5 cm व्यास का एक ठोस लंब वृत्तीय बेलन बनाया जा सके। 


आधार 11 m × 6 m वाले एक घनाभाकार पानी की टंकी में 5 m की ऊँचाई तक पानी भरा है। यदि इस पानी को 3.5 m त्रिज्या वाली एक बेलनाकार टंकी में स्थानांतरित कर दिया जाये, तो इस बेलनाकार टंकी में पानी के स्तर की ऊँचाई ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×