हिंदी

एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता : - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता :

विकल्प

  • सांत

  • असांत

  • असांत आवर्ती

  • असांत अनावर्ती

MCQ

उत्तर

असांत अनावर्ती 

स्पष्टीकरण -

एक परिमेय संख्या का दशमलव निरूपण अनवसानी अनावर्ती नहीं हो सकता क्योंकि परिमेय संख्या का दशमलव प्रसार सांत या असांत आवर्ती (पुनरावृत्ति) होता है।

shaalaa.com
अपरिमेय संख्याओं का पुनर्भ्रमण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: संख्या पद्धतियाँ - प्रश्नावली 1.1 [पृष्ठ ३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 1 संख्या पद्धतियाँ
प्रश्नावली 1.1 | Q 3. | पृष्ठ ३

संबंधित प्रश्न

सिद्ध कीजिए कि `sqrt5` एक अपरिमेय संख्या है।


सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:

`7sqrt5`


नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।

प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है। 


परिमेय संख्याओं `5/7` और `9/11` बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।


बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:

1.101001000100001...


सिद्ध कीजिए कि `sqrt"p"+sqrt"q"` एक अपरिमेय संख्या है, जहाँ p और q अभाज्य संख्याएँ हैं।


निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?


`sqrt(2)` और `sqrt(3)` के बीच एक परिमेय संख्या है :


`2sqrt(3) + sqrt(3)` बराबर है :


कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×