Advertisements
Advertisements
प्रश्न
एक परिमेय संख्या का दशमलव निरूपण नहीं हो सकता :
विकल्प
सांत
असांत
असांत आवर्ती
असांत अनावर्ती
उत्तर
असांत अनावर्ती
स्पष्टीकरण -
एक परिमेय संख्या का दशमलव निरूपण अनवसानी अनावर्ती नहीं हो सकता क्योंकि परिमेय संख्या का दशमलव प्रसार सांत या असांत आवर्ती (पुनरावृत्ति) होता है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि `sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`7sqrt5`
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।
परिमेय संख्याओं `5/7` और `9/11` बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
1.101001000100001...
सिद्ध कीजिए कि `sqrt"p"+sqrt"q"` एक अपरिमेय संख्या है, जहाँ p और q अभाज्य संख्याएँ हैं।
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
`sqrt(2)` और `sqrt(3)` के बीच एक परिमेय संख्या है :
`2sqrt(3) + sqrt(3)` बराबर है :
कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।