Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `sqrt"p"+sqrt"q"` एक अपरिमेय संख्या है, जहाँ p और q अभाज्य संख्याएँ हैं।
उत्तर
आइए मान लें कि `sqrtp + sqrtq` तर्कसंगत है।
फिर से, मान लीजिए `sqrtp + sqrtq` = a, जहां a परिमेय है।
इसलिए, `sqrtq = a - sqrtp`
दोनों पक्षों का वर्ग करने पर, हमें प्राप्त होता है।
q = `a^2 + p - 2asqrtp` .....[∵ (a – b)2 = a2 + b2 – 2ab]
इसलिए, `sqrtp = (a^2 + p - q)/(2a)`, जो एक विरोधाभास है क्योंकि दाईं ओर तर्कसंगत संख्या है जबकि `sqrtp` अपरिमेय है, क्योंकि p एक अभाज्य संख्या है।
इसलिए, `sqrtp + sqrtq` अपरिमेय है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि `3 + 2sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`7sqrt5`
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
प्रत्येक अपरिमेय संख्या एक वास्तविक संख्या होती है।
नीचे दिए गए कथन सत्य हैं या असत्य हैं। कारण के साथ अपने उत्तर दीजिए।
संख्या रेखा का प्रत्येक बिन्दु `sqrtm` के रूप का होता है, जहाँ m एक प्राकृत संख्या है।
दिखाइए कि संख्या रेखा पर `sqrt5` को किस प्रकार निरूपित किया जा सकता है।
परिमेय संख्याओं `5/7` और `9/11` बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
0.3796
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
7.478478
`sqrt(2)` और `sqrt(3)` के बीच एक परिमेय संख्या है :
`2sqrt(3) + sqrt(3)` बराबर है :