Advertisements
Advertisements
Question
सिद्ध कीजिए कि `sqrt"p"+sqrt"q"` एक अपरिमेय संख्या है, जहाँ p और q अभाज्य संख्याएँ हैं।
Solution
आइए मान लें कि `sqrtp + sqrtq` तर्कसंगत है।
फिर से, मान लीजिए `sqrtp + sqrtq` = a, जहां a परिमेय है।
इसलिए, `sqrtq = a - sqrtp`
दोनों पक्षों का वर्ग करने पर, हमें प्राप्त होता है।
q = `a^2 + p - 2asqrtp` .....[∵ (a – b)2 = a2 + b2 – 2ab]
इसलिए, `sqrtp = (a^2 + p - q)/(2a)`, जो एक विरोधाभास है क्योंकि दाईं ओर तर्कसंगत संख्या है जबकि `sqrtp` अपरिमेय है, क्योंकि p एक अभाज्य संख्या है।
इसलिए, `sqrtp + sqrtq` अपरिमेय है।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि `sqrt5` एक अपरिमेय संख्या है।
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`1/sqrt2`
सिद्ध कीजिए कि निम्नलिखित संख्या अपरिमेय हैं:
`7sqrt5`
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
0.3796
बताइए कि निम्नलिखित संख्या परिमेय हैं या अपरिमेय हैं:
1.101001000100001...
निम्नलिखित में से कौन-सी एक अपरिमेय संख्या है?
`p/q` के रूप में 1.999... का मान, जहाँ p और q पूर्णांक हैं तथा q ≠ 0, होगा :
`2sqrt(3) + sqrt(3)` बराबर है :
`sqrt(2)/3` एक परिमेय संख्या है।
कक्षा के लिए क्रियाकलाप (वर्गमूल सर्पिल की रचना): कागज की एक बड़ी शीट लीजिए और नीचे दी गई विधि से “वर्गमूल सर्पिल” (square root spiral) की रचना कीजिए। सबसे पहले एक बिन्दु O लीजिए और एकक लंबाई का रेखाखंड (line segment) OP खींचिए। एकक लंबाई वाले OP1 पर लंब रेखाखंड P1P2 खींचिए। अब OP2, पर लंब रेखाखंड P2P3 खींचिए। तब OP3 पर लंब रेखाखंड P3P4 खींचिए। इस प्रक्रिया को जारी रखते हुए OPn–1 पर एकक लंबाई वाला लंब रेखाखंड खींचकर आप रेखाखंड Pn–1Pn प्राप्त कर सकते हैं। इस प्रकार आप बिन्दु O, P1, P2, P3,..., Pn,... प्राप्त कर लेंगे और उन्हें मिलाकर `sqrt2, sqrt3, sqrt4...` को दर्शाने वाला एक सुंदर सर्पिल प्राप्त कर लेंगे।