Advertisements
Advertisements
प्रश्न
एक त्रिभुज ABC खींचिए, जिसमें AB = 4 cm, BC = 6 cm और AC = 9 cm है। इस ΔABC के समरूप, स्केल गुणक `3/2` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए क्या दोनों त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि यहाँ दोनों त्रिभुजों में तीनों कोण और दो भुजाएँ बराबर हैं।
उत्तर
निर्माण के चरण:
- एक रेखाखंड BC = 6 cm खींचिए।
- B और C को केंद्र मानकर 4 cm और 9 cm त्रिज्या के दो चाप खींचिए जो एक दूसरे को A पर काटते हैं।
- BA और CA को जोड़ें, ΔABC अभीष्ट त्रिभुज है।
- B से न्यूनकोण बनाते हुए कोई भी किरण BX नीचे की ओर खींचिए।
- BX पर तीन बिंदु B1, B2, B3 अंकित करें, जैसे कि BB1 = B1B2 = B2B3।
- B2C को जोड़ें और B3 से ड्रा करें B3M || B2C विस्तारित रेखा खंड BC को M पर प्रतिच्छेद करता है।
- बिंदु M से, खींचिए MN || CA विस्तारित रेखा खंड BA को N पर प्रतिच्छेद करता है।
फिर, ΔNBM आवश्यक त्रिभुज है जिसकी भुजाएँ ΔABC की संगत भुजाओं के `3/2` के बराबर हैं।
औचित्य:
यहाँ, B3M || B2C
∴ `"BC"/"CM" = 2/1`
अब, `"BM"/"BC" = ("BC" + "CM")/"BC"`
= `1 + "CM"/"BC"`
= `1 + 1/2`
= `3/2`
साथ ही, MN || CA
∴ ΔABC ∼ ΔNBM
इसलिए, `"NB"/"AB" = "NM"/"AC" = "BM"/"BC" = 3/2`
दोनों त्रिभुज सर्वांगसम नहीं हैं, क्योंकि यदि दो त्रिभुज सर्वांगसम हैं, तो उनका आकार और आकार समान होता है। यहां तीनों कोण तो एक जैसे हैं लेकिन तीन भुजाएं एक जैसी नहीं हैं यानी एक भुजा अलग-अलग है।
APPEARS IN
संबंधित प्रश्न
7.6 सेमी लंबा एक रेखाखंड खींचिए और इसे 5:8 के अनुपात में विभाजित कीजिए। दो भागों को मापें। निर्माण का औचित्य बताइए।
4 सेमी, 5 सेमी और 6 सेमी भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर उसके समरूप एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ पहले त्रिभुज की संगत भुजाओं की `2/3` हों। निर्माण का औचित्य बताइए।
एक रेखाखंड AB को 4 : 7 के अनुपात में विभाजित करने के लिए, पहले एक किरण AX इस प्रकार खींची जाती है कि ∠BAX एक न्यून कोण हो और फिर किरण AX पर समान दूरियों पर बिंदु A1, A2, A3, .... अंकित किये जाते हैं और बिंदु B को निम्नलिखित से मिलाया जाता है।
ज्यामितीय रचना से, एक दिये हुए रेखाखंड को `sqrt(3) : 1/sqrt(3)` के अनुपात में विभाजित किया जा सकता है।
लंबाई 7 cm का एक रेखाखंड खींचिए। इस पर स्थित एक बिंदु P ज्ञात कीजिए जो इस रेखाखंड को 3:5 के अनुपात में विभाजित करे।
एक समकोण त्रिभुज ABC खींचिए, जिसमें BC = 12 cm, AB = 5 cm और ∠B = 90° है। इस त्रिभुज के समरूप एक त्रिभुज की रचना कीजिए, जिसका स्केल गुणक `2/3` हो। क्या नया त्रिभुज भी एक समकोण त्रिभुज है?
एक त्रिभुज ABC खींचिए, जिसमें BC = 6 cm, CA = 5 cm और AB = 4 cm है। इस त्रिभुज के समरूप और स्केल गुणक `5/3` के एक त्रिभुज की रचना कीजिए।
एक समांतर चतुर्भुज ABCD खींचिए, जिसमें BC = 5 cm, AB = 3 cm और ∠ABC = 60° है। विकर्ण BD द्वारा इसे दो त्रिभुजों BCD और ABD में विभाजित कीजिए।
एक समद्विबाहु त्रिभुज ABC खींचिए, जिसमें AB = AC = 6 cm और BC = 5 cm है। ΔABC के समरूप, एक त्रिभुज PQR की रचना कीजिए, जिसमें PQ = 8 cm हो।अपनी रचना का औचित्य भी दीजिए।
एक त्रिभुज ABC खींचिए, जिसमें AB = 5 cm, BC = 6 cm और ∠ABC = 60° है। ΔABC के समरूप, स्केल गुणक `5/7` के एक त्रिभुज की रचना कीजिए। रचना का औचित्य दीजिए।