हिंदी

Eliminate θ from the following : x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ

योग

उत्तर

x = 4cosθ − 5sinθ   ...(i)

y = 4sinθ + 5cosθ  ...(ii)

Squaring (i) and (ii) and adding, we get

x2 + y2 = (4cos θ – 5sin θ)2 + (4sin θ + 5cos θ)2

= 16 cos2θ – 40sinθ cosθ + 25 sin2θ + 16 sin2θ + 40sinθ cosθ + 25 cos2θ

= 16(sin2θ + cos2θ) + 25(sin2θ + cos2θ)

= 16(1) + 25(1)

= 41

shaalaa.com
Fundamental Identities
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Trigonometry - 1
EXERCISE 2.2 | Q 4) iii) | पृष्ठ ३१

संबंधित प्रश्न

Evaluate the following : 

sin 30° × cos 45° × tan 360°


If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`


Eliminate θ from the following : 

x = 6cosecθ, y = 8cotθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


If cosecθ + cotθ = 5, then evaluate secθ.


Prove the following identities:

`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×