हिंदी

If cosecθ + cotθ = 5, then evaluate secθ. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If cosecθ + cotθ = 5, then evaluate secθ.

योग

उत्तर

cosecθ + cotθ = 5

1sinθ+cosθsinθ = 5

1+cosθsinθ=5

∴ 1 + cosθ = 5sinθ

Squaring both the sides, we get,

∴ (1 + cosθ)2 = 25sin2θ

∴ 1 + 2cosθ + cos2θ = 25sin2θ

∴ 1 + 2cosθ + cos2θ = 25(1 – cos2θ)

∴ 1 + 2cosθ + cos2θ = 25 – 25cos2θ

∴ 1 + 2cosθ + cos2θ + 25cos2θ – 25 = 0 

∴ 26cos2θ + 2cosθ – 24 = 0

26cos2θ + 26cosθ24cosθ – 24 = 0

∴ 26cosθ (cosθ  + 1) – 24(cosθ + 1) = 0

∴ (cosθ + 1)(26cosθ – 24) = 0

∴ cosθ + 1 = 0 or 26cosθ – 24 = 0

∴ cosθ = – 1  or cosθ = 2426=1213

When cosθ = – 1, sinθ = 0

∴ cosecθ and cotθ are not defined.

∴ cosθ ≠ – 1

∴ cosθ = 1213 

∴ secθ = 1312

shaalaa.com
Fundamental Identities
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Trigonometry - 1
EXERCISE 2.2 | Q 10) | पृष्ठ ३१

संबंधित प्रश्न

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Eliminate θ from the following : 

x = 6cosecθ, y = 8cotθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find sinθ such that 3cosθ + 4sinθ = 4


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

tan3θ1+tan2θ+cot3θ1+cot2θ = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

1secθ+tanθ-1cosθ=1cosθ-1secθ-tanθ


Prove the following identity:

tanθsecθ-1=secθ+1tanθ


Prove the following identities:

cotθcosec θ-1=cosec θ+1cotθ


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Prove the following identities:

1-secθ+tanθ1+secθ-tanθ=secθ+tanθ-1secθ+tanθ+1


Select the correct option from the given alternatives: 

tanA1+secA+1+secAtanA is equal to


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

(tanθ+1cosθ)2+(tanθ-1cosθ)2=2(1+sin2θ1-sin2θ)


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

1+cot + cosecθ1-cot + cosecθ=cosecθ +cotθ-1cotθ-cosecθ+1


Prove the following:

tanθ+secθ-1tanθ+secθ+1=tanθsecθ+1


Prove the following:

cosecθ+cotθ+1cotθ+cosecθ-1=cotθcosecθ-1


If θ lies in the first quadrant and 5 tan θ = 4, then 5sinθ-3cosθsinθ+2cosθ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.