Advertisements
Advertisements
प्रश्न
If cosecθ + cotθ = 5, then evaluate secθ.
उत्तर
cosecθ + cotθ = 5
∴
∴
∴ 1 + cosθ = 5sinθ
Squaring both the sides, we get,
∴ (1 + cosθ)2 = 25sin2θ
∴ 1 + 2cosθ + cos2θ = 25sin2θ
∴ 1 + 2cosθ + cos2θ = 25(1 – cos2θ)
∴ 1 + 2cosθ + cos2θ = 25 – 25cos2θ
∴ 1 + 2cosθ + cos2θ + 25cos2θ – 25 = 0
∴ 26cos2θ + 2cosθ – 24 = 0
∴ 26cos2θ + 26cosθ − 24cosθ – 24 = 0
∴ 26cosθ (cosθ + 1) – 24(cosθ + 1) = 0
∴ (cosθ + 1)(26cosθ – 24) = 0
∴ cosθ + 1 = 0 or 26cosθ – 24 = 0
∴ cosθ = – 1 or cosθ =
When cosθ = – 1, sinθ = 0
∴ cosecθ and cotθ are not defined.
∴ cosθ ≠ – 1
∴ cosθ =
∴ secθ =
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
cosec 45° + cot 45° + tan 0°
Eliminate θ from the following :
x = 6cosecθ, y = 8cotθ
Eliminate θ from the following :
x = 5 + 6cosecθ, y = 3 + 8cotθ
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
Find sinθ such that 3cosθ + 4sinθ = 4
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
Prove the following identities:
Prove the following identity:
Prove the following identities:
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Prove the following identities:
Select the correct option from the given alternatives:
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
Prove the following:
2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
sin4θ +2sin2θ . cos2θ = 1 − cos4θ
Prove the following:
tan2θ − sin2θ = sin4θ sec2θ
Prove the following:
sin6A + cos6A = 1 − 3sin2A + 3 sin4A
Prove the following:
Prove the following:
Prove the following:
If θ lies in the first quadrant and 5 tan θ = 4, then