हिंदी

Find sinθ such that 3cosθ + 4sinθ = 4 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find sinθ such that 3cosθ + 4sinθ = 4

योग

उत्तर

3cosθ + 4 sinθ = 4

∴ 3cosθ = 4 – 4sinθ

∴ 3cosθ = 4(1 – sinθ)

Squaring both the sides, we get,

9cos2θ = 16(1 – sinθ)2

∴ 9(1 – sin2θ) = 16(1 + sin2θ – 2sinθ)

∴ 9 – 9sin2θ = 16 + 16sin2θ – 32sinθ

∴ 25sin2θ – 32sinθ + 7 = 0

∴ 25sin2θ – 25sinθ – 7sinθ + 7 = 0

∴ 25sinθ (sinθ – 1) – 7(sinθ – 1) = 0

∴ (sinθ – 1)(25sinθ – 7) = 0

∴ sinθ – 1 = 0 or 25sinθ – 7 = 0

∴ sinθ = 1 or sinθ = `7/25`

Since, – 1 ≤ sinθ ≤ 1

∴ sinθ = 1 or `7/25`

shaalaa.com
Fundamental Identities
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Trigonometry - 1
EXERCISE 2.2 | Q 9) | पृष्ठ ३१

संबंधित प्रश्न

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following : 

x = 6cosecθ, y = 8cotθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


If cosecθ + cotθ = 5, then evaluate secθ.


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×