हिंदी

Prove the following identities: (1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2

योग

उत्तर

L.H.S. = (1 + cot θ – cosec θ)(1 + tan θ + sec θ)

= `(1 + cos theta/sin theta - 1/sin theta)(1 + sin theta/cos theta + 1/cos theta)`

= `((sin theta+ cos theta - 1)/sin theta)((cos theta + sin theta + 1)/cos theta)`

= `((sin theta + cos theta)^2 - 1^2)/(sin theta cos theta)`       .....[∵ (a − b)(a + b) = a2 − b2]

= `(sin^2theta + cos^2theta + 2sintheta costheta - 1)/(sintheta costheta)`

= `(1 + 2sintheta costheta - 1)/(sin theta cos theta)`

= `(2sinthetacostheta)/(sintheta costheta)`

= 2

= R.H.S.

shaalaa.com
Fundamental Identities
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Trigonometry - 1
EXERCISE 2.2 | Q 15) iv) | पृष्ठ ३१

संबंधित प्रश्न

Evaluate the following:

sin 30° + cos 45° + tan 180°


Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


Eliminate θ from the following : 

x = 6cosecθ, y = 8cotθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find sinθ such that 3cosθ + 4sinθ = 4


If cosecθ + cotθ = 5, then evaluate secθ.


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities:

`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×