Advertisements
Advertisements
प्रश्न
Prove the following:
sin4θ +2sin2θ . cos2θ = 1 − cos4θ
उत्तर
L.H.S. =sin4θ +2sin2θ . cos2θ
= sin2θ(sin2θ + 2cos2θ)
= (sin2θ) (sin2θ + cos2θ + cos2θ)
= (1 – cos2θ) (1 + cos2θ)
= 1 – cos4θ
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
sin 30° × cos 45° × tan 360°
If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`
Eliminate θ from the following :
x = 6cosecθ, y = 8cotθ
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Eliminate θ from the following:
2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
Find sinθ such that 3cosθ + 4sinθ = 4
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ
Prove the following identities:
`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`
Prove the following identities:
`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ
Prove the following identities:
`cottheta/("cosec" theta - 1) = ("cosec" theta + 1)/cot theta`
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Select the correct option from the given alternatives:
`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
If cosecθ − cotθ = q, then the value of cot θ is
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
sin6A + cos6A = 1 − 3sin2A + 3 sin4A
Prove the following:
(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B
Prove the following:
`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
Prove the following identity:
`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`