हिंदी

Prove the following identities: (cos2A – 1) (cot2A + 1) = −1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1

योग

उत्तर

L.H.S. = (cos2A – 1) (cot2A + 1)

= – (1 – cos2A)(1 + cot2A)

= – sin2A · cosec2A

= `- sin^2"A" xx 1/sin^2"A"`

= – 1

= R.H.S.

shaalaa.com
Fundamental Identities
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Trigonometry - 1
EXERCISE 2.2 | Q 15) ii) | पृष्ठ ३१

संबंधित प्रश्न

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


If cosecθ + cotθ = 5, then evaluate secθ.


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×