मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove the following identities: (cos2A – 1) (cot2A + 1) = −1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1

बेरीज

उत्तर

L.H.S. = (cos2A – 1) (cot2A + 1)

= – (1 – cos2A)(1 + cot2A)

= – sin2A · cosec2A

= -sin2A×1sin2A

= – 1

= R.H.S.

shaalaa.com
Fundamental Identities
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following:

sin 30° + cos 45° + tan 180°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following : 

x = 6cosecθ, y = 8cotθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


Find sinθ such that 3cosθ + 4sinθ = 4


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

tan3θ1+tan2θ+cot3θ1+cot2θ = secθ cosecθ – 2sinθ cosθ


Prove the following identity:

tanθsecθ-1=secθ+1tanθ


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Prove the following identities:

1-secθ+tanθ1+secθ-tanθ=secθ+tanθ-1secθ+tanθ+1


Select the correct option from the given alternatives: 

tanA1+secA+1+secAtanA is equal to


Select the correct option from the given alternatives:

If θ = 60°, then 1+tan2θ2tanθ is equal to


Select the correct option from the given alternatives:

1-sin2θ1+cosθ+1+cosθsinθ-sinθ1-cosθ equals


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

(1+cotθ+tanθ)(sinθ-cosθ)sec3θ-cosec3θ= sin2θ cos2θ


Prove the following:

(tanθ+1cosθ)2+(tanθ-1cosθ)2=2(1+sin2θ1-sin2θ)


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

sin3θ+cos3θsinθ+cosθ+sin3θ-cos3θsinθ-cosθ = 2


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

1+cot + cosecθ1-cot + cosecθ=cosecθ +cotθ-1cotθ-cosecθ+1


If θ lies in the first quadrant and 5 tan θ = 4, then 5sinθ-3cosθsinθ+2cosθ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.