मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following: sin 30° + cos 45° + tan 180° - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

sin 30° + cos 45° + tan 180°

बेरीज

उत्तर

We know that,

sin 30° = 12, cos 45° = 12, tan 180° = 0

sin 30° + cos 45° + tan 180°

= 12+12+0

= 12+12×22           ...[Multiply numerator and denominator by 2]

= 12+22

= 1+22

shaalaa.com
Fundamental Identities
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Trigonometry - 1 - EXERCISE 2.1 [पृष्ठ २२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


If tanθ = 12, evaluate 2sinθ+3cosθ4cosθ+3sinθ


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


If cosecθ + cotθ = 5, then evaluate secθ.


If cotθ = 34 and π < θ < 3π2 then find the value of 4cosecθ + 5cosθ.


Prove the following identities:

(1+tan2A)+(1+1tan2A)=1sin2A-sin4A


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

tan3θ1+tan2θ+cot3θ1+cot2θ = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

sinθ1+cosθ+1+cosθsinθ = 2cosecθ


Prove the following identities:

cotθcosec θ-1=cosec θ+1cotθ


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Prove the following identities:

1-secθ+tanθ1+secθ-tanθ=secθ+tanθ-1secθ+tanθ+1


Select the correct option from the given alternatives:

1-sin2θ1+cosθ+1+cosθsinθ-sinθ1-cosθ equals


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

(1+cotθ+tanθ)(sinθ-cosθ)sec3θ-cosec3θ= sin2θ cos2θ


Prove the following:

(tanθ+1cosθ)2+(tanθ-1cosθ)2=2(1+sin2θ1-sin2θ)


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

sin3θ+cos3θsinθ+cosθ+sin3θ-cos3θsinθ-cosθ = 2


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

tanθ+secθ-1tanθ+secθ+1=tanθsecθ+1


Prove the following:

cosecθ+cotθ+1cotθ+cosecθ-1=cotθcosecθ-1


If θ lies in the first quadrant and 5 tan θ = 4, then 5sinθ-3cosθsinθ+2cosθ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.