मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove the following identities: sinθ1+cosθ+1+cosθsinθ = 2cosecθ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ

बेरीज

उत्तर

L.H.S. = `sintheta/(1 + costheta) + (1 + costheta)/sintheta`

= `(sin^2theta + (1 + cos theta)^2)/(sintheta*(1 + cos theta)`

= `(sin^2 theta + 1 + 2costheta + cos^2 theta)/(sintheta(1 + costheta))`

= `((sin^2 theta + cos^2theta) + 1 + 2costheta)/(sintheta(1 + costheta))`

= `(1 + 1 + 2costheta)/(sintheta(1 + costheta))`

= `(2 + 2costheta)/(sintheta(1 + costheta))`

= `(2(1 + costheta))/(sintheta(1 + costheta))`

= `2/sintheta`

= 2.cosec θ

= R.H.S.

shaalaa.com
Fundamental Identities
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

संबंधित प्रश्‍न

Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


If cosecθ + cotθ = 5, then evaluate secθ.


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×