Advertisements
Advertisements
प्रश्न
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
उत्तर
LH.S. = sin4θ + cos4θ
= (sin2θ)2 + (cos2θ)2
= (sin2θ + cos2θ)2 – 2sin2θ cos2θ ...[∵ a2 + b2 = (a + b)2 – 2ab]
= (1)2 – 2sin2θ cos2θ
= 1 – 2sin2θ cos2θ
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
sin 30° + cos 45° + tan 180°
If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`
Eliminate θ from the following :
x = 6cosecθ, y = 8cotθ
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
Find sinθ such that 3cosθ + 4sinθ = 4
If cosecθ + cotθ = 5, then evaluate secθ.
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identity:
`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
Prove the following identities:
`cottheta/("cosec" theta - 1) = ("cosec" theta + 1)/cot theta`
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Prove the following identities:
`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals
Select the correct option from the given alternatives:
The value of tan1°.tan2°tan3°..... tan89° is equal to
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
sin4θ +2sin2θ . cos2θ = 1 − cos4θ
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B
Prove the following:
`(1 + cot + "cosec" theta)/(1 - cot + "cosec" theta) = ("cosec" theta + cottheta - 1)/(cottheta - "cosec"theta + 1)`
Prove the following:
`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.