मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove the following: (sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7

बेरीज

उत्तर

L.H.S. = (sinθ + cosecθ)2 + (cosθ + secθ) 

= sin2θ + cosec2θ + 2sinθ cosecθ + cos2θ + sec2θ + 2cosθ secθ

= (sin2θ + cos2θ) + cosec2θ + 2 + sec2θ + 2

= 1 + (1 + cot2θ) + 2 + (1 + tan2θ) + 2

= tan2θ + cot2θ + 7

= R.H.S.

shaalaa.com
Fundamental Identities
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Trigonometry - 1 - MISCELLANEOUS EXERCISE - 2 [पृष्ठ ३४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Trigonometry - 1
MISCELLANEOUS EXERCISE - 2 | Q 10) xi) | पृष्ठ ३४

संबंधित प्रश्‍न

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×