मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Prove the following identities: (sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 

बेरीज

उत्तर

L.H.S. = (sinθ + sec θ)2 + (cosθ + cosec θ)2 

= `(sin theta + 1/cos theta)^2 + (cos theta + 1/sin theta)^2`

= `(sin theta cos theta + 1)^2/cos^2 theta + (sin theta cos theta + 1)^2/sin^2 theta `

= `(sin theta cos theta + 1)^2 (1/cos^2theta + 1/sin^2 theta)`

= `(sin theta cos theta + 1)^2 ((sin^2 theta + cos^2 theta)/(sin^2 theta cos^2 theta))`

= `(sin theta cos theta + 1)^2 (1/(sin^2 theta cos^2 theta))`

= `((sin theta cos theta + 1)/(sin theta cos theta))^2`

= `((sin theta cos theta)/(sin theta cos theta) + 1/(sin theta cos theta))^2`

= (1 + cosecθ secθ)2 

= R.H.S.

shaalaa.com
Fundamental Identities
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Trigonometry - 1 - EXERCISE 2.2 [पृष्ठ ३१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


Find sinθ such that 3cosθ + 4sinθ = 4


Prove the following identities:

`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×