Advertisements
Advertisements
प्रश्न
Prove the following identities:
(sec A + cos A)(sec A − cos A) = tan2A + sin2A
उत्तर
LHS = (sec A + cos A)(sec A − cos A)
LHS = sec2A − cos2A ...[(a + b)(a − b) = a2 − b2]
LHS = `1/cos^2"A" - cos^2"A"`
LHS = `(1 - cos^4"A")/cos^2"A"`
LHS = `(1^2-(cos^2"A")^2)/(cos^2"A")`
LHS = `((1 - cos^2"A")(1 + cos^2"A"))/cos^2"A" ...[a^2 − b^2 = (a + b)(a − b)]`
LHS = `(sin^2"A"(1 + cos^2"A"))/cos^2"A"`
LHS = `(sin^2"A" + sin^2"A"cos^2"A")/cos^2"A"`
LHS = `(sin^2"A")/(cos^2"A") + (sin^2"A"cos^2"A")/(cos^2"A")`
LHS = `sin^2"A"/cos^2"A" + sin^2"A"`
LHS = tan2A + sin2A
RHS = tan2A + sin2A
∴ LHS = RHS
∴ (sec A + cos A)(sec A − cos A) = tan2A + sin2A
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
cosec 45° + cot 45° + tan 0°
Evaluate the following :
sin 30° × cos 45° × tan 360°
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 6cosecθ, y = 8cotθ
Eliminate θ from the following :
x = 5 + 6cosecθ, y = 3 + 8cotθ
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
Find sinθ such that 3cosθ + 4sinθ = 4
If cosecθ + cotθ = 5, then evaluate secθ.
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Prove the following identities:
`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
`cottheta/("cosec" theta - 1) = ("cosec" theta + 1)/cot theta`
Select the correct option from the given alternatives:
If cosecθ + cotθ = `5/2`, then the value of tanθ is
Select the correct option from the given alternatives:
`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals
Select the correct option from the given alternatives:
The value of tan1°.tan2°tan3°..... tan89° is equal to
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
sin4θ +2sin2θ . cos2θ = 1 − cos4θ
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
sin6A + cos6A = 1 − 3sin2A + 3 sin4A
Prove the following:
`(1 + cot + "cosec" theta)/(1 - cot + "cosec" theta) = ("cosec" theta + cottheta - 1)/(cottheta - "cosec"theta + 1)`
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`