English

Prove the following identities: (secA + cosA)(secA − cosA) = tan2A + sin2A - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A

Sum

Solution

LHS = (sec A + cos A)(sec A − cos A)

LHS = sec2A − cos2A       ...[(a + b)(a − b) = a2 − b2]

LHS = `1/cos^2"A" - cos^2"A"`

LHS = `(1 - cos^4"A")/cos^2"A"`

LHS = `(1^2-(cos^2"A")^2)/(cos^2"A")`

LHS = `((1 - cos^2"A")(1 + cos^2"A"))/cos^2"A"      ...[a^2 − b^2 = (a + b)(a − b)]`

LHS = `(sin^2"A"(1 + cos^2"A"))/cos^2"A"`

LHS = `(sin^2"A" + sin^2"A"cos^2"A")/cos^2"A"`

LHS = `(sin^2"A")/(cos^2"A") + (sin^2"A"cos^2"A")/(cos^2"A")`

LHS = `sin^2"A"/cos^2"A" + sin^2"A"`

LHS = tan2A + sin2A

RHS = tan2A + sin2A

∴ LHS = RHS

∴ (sec A + cos A)(sec A − cos A) = tan2A + sin2A

Hence proved.

shaalaa.com
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - EXERCISE 2.2 [Page 31]

RELATED QUESTIONS

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


Prove the following identities:

`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×