Advertisements
Advertisements
Question
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
Solution
2 cos2 θ = 3 sin θ
∴ 2(1 – sin2θ) = 3 sin θ
∴ 2 – 2 sin2θ = 3 sin θ
∴ 2 sin2 θ + 3sin θ – 2 = 0
∴ 2 sin2 θ + 4 sin θ – sin θ – 2 = 0
∴ 2 sin θ (sin θ + 2) –1 (sin θ + 2) = 0
∴ (sin θ + 2) (2 sin θ – 1) = 0
∴ sin θ + 2 = 0 or 2 sin θ – 1 = 0
∴ sin θ = – 2 or sin θ = `1/2`
Since, – 1 ≤ sin θ ≤ 1
∴ sin θ = `1/2`
∴ θ = 30° ...`[because sin 30^circ = 1/2]`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
sin 30° + cos 45° + tan 180°
Evaluate the following :
cosec 45° + cot 45° + tan 0°
If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Eliminate θ from the following:
2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ
If cosecθ + cotθ = 5, then evaluate secθ.
Prove the following identities:
`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ
Prove the following identities:
(sec A + cos A)(sec A − cos A) = tan2A + sin2A
Prove the following identities:
`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`
Select the correct option from the given alternatives:
If cosecθ − cotθ = q, then the value of cot θ is
Select the correct option from the given alternatives:
The value of tan1°.tan2°tan3°..... tan89° is equal to
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0
Prove the following:
`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
sin6A + cos6A = 1 − 3sin2A + 3 sin4A
Prove the following:
`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`