Advertisements
Advertisements
Question
If cosecθ + cotθ = 5, then evaluate secθ.
Solution
cosecθ + cotθ = 5
∴ `1/sinθ + cosθ/sinθ` = 5
∴ `(1 + cosθ)/sinθ = 5`
∴ 1 + cosθ = 5sinθ
Squaring both the sides, we get,
∴ (1 + cosθ)2 = 25sin2θ
∴ 1 + 2cosθ + cos2θ = 25sin2θ
∴ 1 + 2cosθ + cos2θ = 25(1 – cos2θ)
∴ 1 + 2cosθ + cos2θ = 25 – 25cos2θ
∴ 1 + 2cosθ + cos2θ + 25cos2θ – 25 = 0
∴ 26cos2θ + 2cosθ – 24 = 0
∴ 26cos2θ + 26cosθ − 24cosθ – 24 = 0
∴ 26cosθ (cosθ + 1) – 24(cosθ + 1) = 0
∴ (cosθ + 1)(26cosθ – 24) = 0
∴ cosθ + 1 = 0 or 26cosθ – 24 = 0
∴ cosθ = – 1 or cosθ = `24/26 = 12/13`
When cosθ = – 1, sinθ = 0
∴ cosecθ and cotθ are not defined.
∴ cosθ ≠ – 1
∴ cosθ = `12/13`
∴ secθ = `13/12`
APPEARS IN
RELATED QUESTIONS
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Eliminate θ from the following :
x = 5 + 6cosecθ, y = 3 + 8cotθ
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2
Prove the following identities:
`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ
Prove the following identities:
`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`
Prove the following identities:
`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ
Prove the following identity:
`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
Prove the following identities:
`cottheta/("cosec" theta - 1) = ("cosec" theta + 1)/cot theta`
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Prove the following identities:
`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`
Select the correct option from the given alternatives:
`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
If cosecθ − cotθ = q, then the value of cot θ is
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
sin4θ +2sin2θ . cos2θ = 1 − cos4θ
Prove the following:
`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2
Prove the following:
tan2θ − sin2θ = sin4θ sec2θ
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
`(1 + cot + "cosec" theta)/(1 - cot + "cosec" theta) = ("cosec" theta + cottheta - 1)/(cottheta - "cosec"theta + 1)`
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following identity:
`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`