Advertisements
Advertisements
Question
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Solution
L.H.S. = `(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2`
= `(sintheta/costheta + 1/costheta)^2 + (sintheta/costheta - 1/costheta)^2`
= `((sintheta+ 1)^2)/cos^2theta + ((sintheta - 1)^2)/cos^2theta`
= `((sintheta + 1)^2 + (sintheta - 1)^2)/cos^2theta`
= `(sin^2theta + 2sintheta + 1 + sin^2theta - 2sintheta + 1)/cos^2theta`
= `2((sin^2theta+1)/(cos^2theta))`
= `2((1 + sin^2theta)/(1 - sin^2theta))`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 6cosecθ, y = 8cotθ
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Eliminate θ from the following :
x = 5 + 6cosecθ, y = 3 + 8cotθ
Eliminate θ from the following:
2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
If cosecθ + cotθ = 5, then evaluate secθ.
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`
Prove the following identities:
`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ
Prove the following identity:
`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
Prove the following identities:
(sec A + cos A)(sec A − cos A) = tan2A + sin2A
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Prove the following identities:
`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`
Select the correct option from the given alternatives:
`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to
Select the correct option from the given alternatives:
If cosecθ + cotθ = `5/2`, then the value of tanθ is
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
tan2θ − sin2θ = sin4θ sec2θ
Prove the following:
`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`