English

Prove the following: (tanθ+1cosθ)2+(tanθ-1cosθ)2=2(1+sin2θ1-sin2θ) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`

Sum

Solution

L.H.S. = `(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2`

= `(sintheta/costheta + 1/costheta)^2 + (sintheta/costheta - 1/costheta)^2`

= `((sintheta+ 1)^2)/cos^2theta + ((sintheta - 1)^2)/cos^2theta`

= `((sintheta + 1)^2 + (sintheta - 1)^2)/cos^2theta`

= `(sin^2theta + 2sintheta + 1 + sin^2theta - 2sintheta  + 1)/cos^2theta`

= `2((sin^2theta+1)/(cos^2theta))` 

= `2((1 + sin^2theta)/(1 - sin^2theta))`

= R.H.S.

shaalaa.com
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - MISCELLANEOUS EXERCISE - 2 [Page 33]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Trigonometry - 1
MISCELLANEOUS EXERCISE - 2 | Q 10) iii) | Page 33

RELATED QUESTIONS

If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following : 

x = 6cosecθ, y = 8cotθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


If cosecθ + cotθ = 5, then evaluate secθ.


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×