Advertisements
Advertisements
Question
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Solution
We know that,
cosec2θ = 1 + cot2θ
= `1 + (3/4)^2 = 1 + 9/16`
∴ cosec2θ = `25/16`
∴ cosecθ = `±5/4`
Since π < θ < `(3pi)/2`,
θ lies in the third quadrant.
∴ cosecθ < 0
∴ cosecθ = `-5/4`
cotθ = `3/4`
tanθ = `1/cottheta = 4/3`
We know that,
sec2θ = 1 + tan2θ = `1 + (4/3)^2`
= `1 + 16/9 = 25/9`
∴ secθ = `±5/3`
Since θ lies in the third quadrant,
secθ < 0
∴ secθ = `-5/3`
cosθ = `1/sectheta = (-3)/5`
∴ 4cosecθ + 5cosθ
= `4(-5/4) + 5(-3/5)`
= –5 – 3= – 8
Notes
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
sin 30° + cos 45° + tan 180°
Evaluate the following :
sin 30° × cos 45° × tan 360°
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
If cosecθ + cotθ = 5, then evaluate secθ.
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ
Prove the following identities:
`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`
Prove the following identities:
`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ
Prove the following identity:
`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
Prove the following identities:
(sec A + cos A)(sec A − cos A) = tan2A + sin2A
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
If cosecθ + cotθ = `5/2`, then the value of tanθ is
Select the correct option from the given alternatives:
`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals
Select the correct option from the given alternatives:
If cosecθ − cotθ = q, then the value of cot θ is
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin6A + cos6A = 1 − 3sin2A + 3 sin4A
Prove the following:
`(1 + cot + "cosec" theta)/(1 - cot + "cosec" theta) = ("cosec" theta + cottheta - 1)/(cottheta - "cosec"theta + 1)`
Prove the following:
`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
Prove the following identity:
`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`
If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.