English

If cotθ = 34 and π < θ < 3π2 then find the value of 4cosecθ + 5cosθ. - Mathematics and Statistics

Advertisements
Advertisements

Question

If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.

Sum

Solution

We know that,

cosec2θ = 1 + cot2θ

= `1 + (3/4)^2 = 1 + 9/16`

∴ cosec2θ = `25/16`

∴ cosecθ = `±5/4`

Since π < θ < `(3pi)/2`,

θ lies in the third quadrant.

∴ cosecθ < 0

∴ cosecθ = `-5/4`

cotθ = `3/4`

tanθ = `1/cottheta = 4/3`

We know that,

sec2θ = 1 +  tan2θ = `1 + (4/3)^2`

= `1 + 16/9 = 25/9`

∴ secθ = `±5/3`

Since θ lies in the third quadrant,

secθ < 0

∴ secθ  = `-5/3`

cosθ = `1/sectheta = (-3)/5`

∴ 4cosecθ + 5cosθ

= `4(-5/4) + 5(-3/5)`

= –5 – 3= – 8

shaalaa.com

Notes

There is a printing mistake in the textbook question. It should be `pi < theta < (3pi)/2` not `pi < theta < (3pi)/4`
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - EXERCISE 2.2 [Page 31]

RELATED QUESTIONS

Evaluate the following:

sin 30° + cos 45° + tan 180°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


If cosecθ + cotθ = 5, then evaluate secθ.


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×