English

Prove the following identities: 1secθ+tanθ-1cosθ=1cosθ-1secθ-tanθ - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`

Sum

Solution

We have to prove that,

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`

`1/(sectheta + tantheta) + 1/(sectheta - tantheta) = 1/costheta + 1/costheta`

`1/(sectheta + tantheta) + 1/(sec theta - tan theta) = 2/costheta`

L.H.S. = `1/(sectheta + tantheta) + 1/(sec theta - tan theta)`

= `(sectheta -  tantheta + sectheta + tantheta)/((sectheta + tantheta)(sectheta - tantheta))`

= `(2sectheta)/(sec^2theta - tan^2theta)` .....[a2 − b2 = (a + b) (a − b)]

= `(2secθ)/1`  ...`[(because sec^2theta = 1 + tan^2theta),(therefore sec^2 theta - tan^2theta = 1)]`

= 2secθ

= `2 xx 1/(cosθ)`

= `2/costheta`

= R.H.S.

Hence proved.

shaalaa.com
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - EXERCISE 2.2 [Page 31]

APPEARS IN

RELATED QUESTIONS

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities:

`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×