English

Prove the following: 2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0

Sum

Solution

sin6θ + cos6θ

= (sin2θ)3 + (cos2θ)3

= (sin2θ + cos2θ)3 – 3sin2θ cos2θ (sin2θ + cos2θ) ...[∵ a3 + b3 = (a + b)3 – 3ab(a + b)]

= (1)3 – 3 sin2θ cos2θ(1)

= 1 – 3 sin2θ cos2θ 

sin4θ + cos4θ

= (sin2θ)2 + (cos2θ)2

= (sin2θ + cos2θ)2 – 2sin2θ cos2θ ...[∵ a2 + b2 = (a + b)2 – 2ab]

= 1 – 2sin2θ cos2θ

L.H.S. = 2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1

= 2(1 – 3 sin2θ cos2θ) –  3(1 –  2 sin2θ cos2θ) + 1

= 2 – 6 sin2θ cos2θ –  3 + 6 sin2θ cos2θ + 1

= 0

= R.H.S.

shaalaa.com
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - MISCELLANEOUS EXERCISE - 2 [Page 33]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Trigonometry - 1
MISCELLANEOUS EXERCISE - 2 | Q 10) vi) | Page 33

RELATED QUESTIONS

Evaluate the following : 

cosec 45° + cot 45° + tan 0°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`


Eliminate θ from the following : 

x = 6cosecθ, y = 8cotθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find sinθ such that 3cosθ + 4sinθ = 4


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities:

`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×