English

Prove the following: 1+cot + cosecθ1-cot + cosecθ=cosecθ +cotθ-1cotθ-cosecθ+1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`

Sum

Solution

We know that, cosec2θ – cot2θ = 1

∴ (cosecθ – cotθ)(cosecθ + cotθ) = 1

∴ `("cosec" theta + cottheta)/1 = 1/("cosec" theta - cottheta)`

By componendo-dividendo, we get

`("cosec" theta + cottheta+1)/("cosec" theta + cottheta-1) = (1+"cosec"theta-cottheta)/(1-("cosec" theta - cottheta))`

∴ `("cosec" theta + cottheta + 1)/("cosec" theta + cottheta -1)=(1 + "cosec"theta - cottheta)/(1 - "cosec"theta + cottheta)`

∴ `("cosec" theta+cot theta + 1)/(1 +"cosec" theta-cottheta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`

shaalaa.com
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - MISCELLANEOUS EXERCISE - 2 [Page 34]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Trigonometry - 1
MISCELLANEOUS EXERCISE - 2 | Q 10) xv) | Page 34

RELATED QUESTIONS

Evaluate the following : 

sin 30° × cos 45° × tan 360°


If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`


Eliminate θ from the following: 

x = 3secθ , y = 4tanθ


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


If cosecθ + cotθ = 5, then evaluate secθ.


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities:

`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following identity:

`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×