English

Prove the following identities: 1 + 3cosec2θ cot2θ + cot6θ = cosec6θ - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ

Sum

Solution

L.H.S. = 1 + 3cosec2θ cot2θ + cot6θ

 = 1 + 3 cosec2θ cot2θ + (cot2θ)3

= 1 + 3 cosec2θ (cosec2θ – 1) + (cosec2θ – 1)   ...`[(1 + cot^2theta = cosec^2theta),(cot^2theta = cosec^2 theta - 1)]`

= 1 + 3 cosec4θ – 3 cosec2θ + cosec6θ – 3 cosec4θ + 3cosec2θ – 1       ...[(a - b)3 = a3 - 3a2b + 3ab2 - b3]

= `cancel(1) + cancel(3 cosec^4θ) - cancel(3 cosec^2θ)  +  cosec^6θ - cancel(3 cosec^4 θ) + cancel(3cosec^2 θ) cancel(- 1)` 

= cosec6θ

= R.H.S.

shaalaa.com
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - EXERCISE 2.2 [Page 31]

APPEARS IN

RELATED QUESTIONS

Evaluate the following:

sin 30° + cos 45° + tan 180°


Evaluate the following : 

sin 30° × cos 45° × tan 360°


Eliminate θ from the following :

x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ


Eliminate θ from the following :

x = 5 + 6cosecθ, y = 3 + 8cotθ


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find sinθ such that 3cosθ + 4sinθ = 4


If cosecθ + cotθ = 5, then evaluate secθ.


If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

`cottheta/("cosec"  theta - 1) = ("cosec"  theta + 1)/cot theta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Select the correct option from the given alternatives: 

`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to


Select the correct option from the given alternatives:

If cosecθ + cotθ = `5/2`, then the value of tanθ is


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7


Prove the following:

sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B


Prove the following:

`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×