English

Prove the following identities: sinθ1+cosθ+1+cosθsinθ = 2cosecθ - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following identities:

`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ

Sum

Solution

L.H.S. = `sintheta/(1 + costheta) + (1 + costheta)/sintheta`

= `(sin^2theta + (1 + cos theta)^2)/(sintheta*(1 + cos theta)`

= `(sin^2 theta + 1 + 2costheta + cos^2 theta)/(sintheta(1 + costheta))`

= `((sin^2 theta + cos^2theta) + 1 + 2costheta)/(sintheta(1 + costheta))`

= `(1 + 1 + 2costheta)/(sintheta(1 + costheta))`

= `(2 + 2costheta)/(sintheta(1 + costheta))`

= `(2(1 + costheta))/(sintheta(1 + costheta))`

= `2/sintheta`

= 2.cosec θ

= R.H.S.

shaalaa.com
Fundamental Identities
  Is there an error in this question or solution?
Chapter 2: Trigonometry - 1 - EXERCISE 2.2 [Page 31]

APPEARS IN

RELATED QUESTIONS

Evaluate the following:

sin 30° + cos 45° + tan 180°


Evaluate the following : 

cosec 45° + cot 45° + tan 0°


If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`


Eliminate θ from the following:

2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ


Find the acute angle θ such that 2 cos2θ = 3 sin θ.


Find the acute angle θ such that 5tan2θ + 3 = 9secθ.


Prove the following identities:

`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`


Prove the following identities: 

(cos2A – 1) (cot2A + 1) = −1


Prove the following identities:

(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2 


Prove the following identities:

(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2


Prove the following identities:

`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ


Prove the following identities:

`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`


Prove the following identity:

`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`


Prove the following identities:

(sec A + cos A)(sec A − cos A) = tan2A + sin2A


Prove the following identity:

1 + 3cosec2θ cot2θ + cot6θ = cosec6θ


Prove the following identities:

`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`


Select the correct option from the given alternatives:

If cosecθ − cotθ = q, then the value of cot θ is


Select the correct option from the given alternatives:

The value of tan1°.tan2°tan3°..... tan89° is equal to


Prove the following:  

sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1


Prove the following:

`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ


Prove the following:

`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`


Prove the following:

sin4θ + cos4θ = 1 – 2 sin2θ cos2θ


Prove the following:

2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0


Prove the following:

cos4θ − sin4θ +1= 2cos2θ


Prove the following:

sin4θ +2sin2θ . cos2θ = 1 − cos4θ


Prove the following:

`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2


Prove the following:

tan2θ − sin2θ = sin4θ sec2θ


Prove the following:

sin6A + cos6A = 1 − 3sin2A + 3 sin4A


Prove the following:

`(1 + cot  +  "cosec" theta)/(1 - cot  +  "cosec" theta) = ("cosec" theta  + cottheta - 1)/(cottheta - "cosec"theta + 1)`


Prove the following:

`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`


Prove the following:

`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×