Advertisements
Advertisements
प्रश्न
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
उत्तर
L.H.S. = (sinθ + cosecθ)2 + (cosθ + secθ)2
= sin2θ + cosec2θ + 2sinθ cosecθ + cos2θ + sec2θ + 2cosθ secθ
= (sin2θ + cos2θ) + cosec2θ + 2 + sec2θ + 2
= 1 + (1 + cot2θ) + 2 + (1 + tan2θ) + 2
= tan2θ + cot2θ + 7
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
cosec 45° + cot 45° + tan 0°
Evaluate the following :
sin 30° × cos 45° × tan 360°
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 5 + 6cosecθ, y = 3 + 8cotθ
Eliminate θ from the following:
2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
Find sinθ such that 3cosθ + 4sinθ = 4
If cosecθ + cotθ = 5, then evaluate secθ.
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Prove the following identities:
(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ
Prove the following identities:
`cottheta/("cosec" theta - 1) = ("cosec" theta + 1)/cot theta`
Prove the following identities:
(sec A + cos A)(sec A − cos A) = tan2A + sin2A
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Select the correct option from the given alternatives:
`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
If cosecθ + cotθ = `5/2`, then the value of tanθ is
Select the correct option from the given alternatives:
If cosecθ − cotθ = q, then the value of cot θ is
Select the correct option from the given alternatives:
The value of tan1°.tan2°tan3°..... tan89° is equal to
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
Prove the following:
2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0
Prove the following:
`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2
Prove the following:
tan2θ − sin2θ = sin4θ sec2θ
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.