Advertisements
Advertisements
प्रश्न
Prove the following identities:
`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ
उत्तर
L.H.S> = `tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta`
= `tan^3theta/sec^2theta + cot^3theta/("cosec"^2theta)`
= `(((sin^3theta)/cos^3 theta))/((1/cos^2theta)) + (((cos^3 theta)/(sin^3 theta)))/((1/sin^2 theta)`
= `sin^3theta/costheta + cos^3theta/sintheta`
= `(sin^4theta + cos^4 theta)/(sintheta cos theta)`
= `((sin^2 theta)^2 + (cos^2 theta)^2)/(sin theta cos theta`
= `((sin^2 theta + cos^2 theta)^2 - 2sin^2 theta cos^2 theta)/(sintheta cos theta)` ...[∵ a2 + b2 = (a + b)2 - 2ab]
= `(1^2 - 2sin^2 theta cos^2 theta)/(sin theta cos theta)`
= `1/(costheta*sintheta) - (2sin^2theta cos^2 theta)/(sintheta cos theta)`
= secθ cosecθ – 2sinθ cosθ
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
cosec 45° + cot 45° + tan 0°
Evaluate the following :
sin 30° × cos 45° × tan 360°
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 6cosecθ, y = 8cotθ
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Eliminate θ from the following:
2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
Find sinθ such that 3cosθ + 4sinθ = 4
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Prove the following identities:
`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identity:
`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
Prove the following identities:
`cottheta/("cosec" theta - 1) = ("cosec" theta + 1)/cot theta`
Prove the following identities:
`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`
Select the correct option from the given alternatives:
`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals
Select the correct option from the given alternatives:
If cosecθ − cotθ = q, then the value of cot θ is
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Prove the following:
2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
sin4θ +2sin2θ . cos2θ = 1 − cos4θ
Prove the following:
tan2θ − sin2θ = sin4θ sec2θ
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
Prove the following identity:
`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`