Advertisements
Advertisements
प्रश्न
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
उत्तर
We know that,
cot2θ = cosec2θ – 1
∴ cotθ · cotθ = (cosecθ + 1) (cosecθ –1)
∴ `cottheta/("cosec"theta + 1) = ("cosec"theta - 1)/cottheta`
By the theorem on equal ratios, we get
`cottheta/("cosec"theta + 1) = ("cosec"theta - 1) /cottheta = (cottheta + "cosec"theta - 1)/("cosec"theta +1 + cottheta)`
∴ `("cosec"theta- 1)/(cottheta) = (cottheta+"cosec"theta-1)/("cosec"theta + 1 + cot theta)`
∴ `(1/sintheta-1)/(costheta/sintheta)=("cosec"theta+cottheta-1)/("cosec"theta+cottheta+1)`
∴ `("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
sin 30° + cos 45° + tan 180°
Evaluate the following :
cosec 45° + cot 45° + tan 0°
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Eliminate θ from the following :
x = 5 + 6cosecθ, y = 3 + 8cotθ
Eliminate θ from the following:
2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
Find sinθ such that 3cosθ + 4sinθ = 4
If cosecθ + cotθ = 5, then evaluate secθ.
Prove the following identities:
`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
`1/(sectheta + tantheta) - 1/costheta = 1/costheta - 1/(sectheta - tantheta)`
Prove the following identities:
`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ
Prove the following identity:
`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
Prove the following identities:
(sec A + cos A)(sec A − cos A) = tan2A + sin2A
Prove the following identity:
1 + 3cosec2θ cot2θ + cot6θ = cosec6θ
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
The value of tan1°.tan2°tan3°..... tan89° is equal to
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
`((1 + cot theta + tan theta)(sin theta - costheta)) /(sec^3theta - "cosec"^3theta)`= sin2θ cos2θ
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
sin4θ + cos4θ = 1 – 2 sin2θ cos2θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin6A + cos6A = 1 − 3sin2A + 3 sin4A
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following identity:
`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`
If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.