Advertisements
Advertisements
प्रश्न
Prove the following:
`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
उत्तर
We know that,
tan2θ = sec2θ – 1
∴ tanθ.tanθ = (secθ + 1)(secθ – 1)
∴ `tantheta/(sec theta + 1) = (sectheta - 1)/tantheta`
By the theorem on equal ratios, we get
`tantheta/(sec theta + 1) = (sectheta - 1)/tantheta = (tantheta + sectheta - 1)/(tantheta + 1 + tantheta)`
∴ `(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
cosec 45° + cot 45° + tan 0°
Evaluate the following :
sin 30° × cos 45° × tan 360°
If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`
Eliminate θ from the following :
x = 4cosθ − 5sinθ, y = 4sinθ + 5cosθ
Eliminate θ from the following:
2x = 3 − 4 tan θ, 3y = 5 + 3 sec θ
Find the acute angle θ such that 2 cos2θ = 3 sin θ.
Find sinθ such that 3cosθ + 4sinθ = 4
If cosecθ + cotθ = 5, then evaluate secθ.
If cotθ = `3/4` and π < θ < `(3pi)/2` then find the value of 4cosecθ + 5cosθ.
Prove the following identities:
`(1 + tan^2 "A") + (1 + 1/tan^2"A") = 1/(sin^2 "A" - sin^4"A")`
Prove the following identities:
`sintheta/(1 + costheta) + (1 + costheta)/sintheta` = 2cosecθ
Prove the following identities:
`(1 - sectheta + tan theta)/(1 + sec theta - tan theta) = (sectheta + tantheta - 1)/(sectheta + tantheta + 1)`
Select the correct option from the given alternatives:
If θ = 60°, then `(1 + tan^2theta)/(2tantheta)` is equal to
Select the correct option from the given alternatives:
If cosecθ + cotθ = `5/2`, then the value of tanθ is
Select the correct option from the given alternatives:
`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals
Select the correct option from the given alternatives:
The value of tan1°.tan2°tan3°..... tan89° is equal to
Prove the following:
sin2A cos2B + cos2A sin2B + cos2A cos2B + sin2A sin2B = 1
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
2(sin6θ + cos6θ) – 3(sin4θ + cos4θ) + 1 = 0
Prove the following:
sin4θ +2sin2θ . cos2θ = 1 − cos4θ
Prove the following:
`(sin^3theta + cos^3theta)/(sintheta + costheta) + (sin^3theta - cos^3theta)/(sintheta - costheta)` = 2
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
sin8θ − cos8θ = (sin2θ − cos2θ) (1 − 2 sin2θ cos2θ)
Prove the following:
sin6A + cos6A = 1 − 3sin2A + 3 sin4A
Prove the following:
`("cosec"theta + cottheta + 1)/(cottheta + "cosec" theta - 1) = cottheta/("cosec"theta - 1)`
Prove the following identity:
`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`
If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.