Advertisements
Advertisements
प्रश्न
If tanθ = `1/2`, evaluate `(2sin theta + 3cos theta)/(4cos theta + 3sin theta)`
उत्तर
Alternative Method :
Given : tan θ = `1/2`
∴ `(2sin theta + 3cos theta)/(4cos theta + 3sin theta) = ((2sin theta)/cos theta + 3)/(4 + (3sintheta)/cos theta)` ...[Dividing numerator and denominator by cos θ]
= `(2tan theta + 3)/(4 + 3 tan theta)`
= `(2(1/2) + 3)/(4 + 3(1/2))`
= `4/((11/2))`
= `8/11`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
sin 30° + cos 45° + tan 180°
Eliminate θ from the following:
x = 3secθ , y = 4tanθ
Eliminate θ from the following :
x = 6cosecθ, y = 8cotθ
Eliminate θ from the following :
x = 5 + 6cosecθ, y = 3 + 8cotθ
Find the acute angle θ such that 5tan2θ + 3 = 9secθ.
If cosecθ + cotθ = 5, then evaluate secθ.
Prove the following identities:
(cos2A – 1) (cot2A + 1) = −1
Prove the following identities:
(sinθ + sec θ)2 + (cosθ + cosec θ)2 = (1 + cosecθ sec θ)2
Prove the following identities:
(1 + cot θ – cosec θ)(1 + tan θ + sec θ) = 2
Prove the following identities:
`tan^3theta/(1 + tan^2theta) + cot^3theta/(1 + cot^2theta` = secθ cosecθ – 2sinθ cosθ
Prove the following identity:
`tantheta/(sectheta - 1) = (sectheta + 1)/tantheta`
Prove the following identities:
(sec A + cos A)(sec A − cos A) = tan2A + sin2A
Select the correct option from the given alternatives:
`tan"A"/(1 + sec"A") + (1 + sec"A")/tan"A"` is equal to
Select the correct option from the given alternatives:
If cosecθ + cotθ = `5/2`, then the value of tanθ is
Select the correct option from the given alternatives:
`1 - sin^2theta/(1 + costheta) + (1 + costheta)/sintheta - sintheta/(1 - costheta)` equals
Select the correct option from the given alternatives:
The value of tan1°.tan2°tan3°..... tan89° is equal to
Prove the following:
`(tan theta + 1/costheta)^2 + (tan theta - 1/costheta)^2 = 2((1 + sin^2theta)/(1 - sin^2theta))`
Prove the following:
2 sec2θ – sec4θ – 2cosec2θ + cosec4θ = cot4θ – tan4θ
Prove the following:
cos4θ − sin4θ +1= 2cos2θ
Prove the following:
(sinθ + cosecθ)2 + (cosθ + secθ)2 = tan2θ + cot2θ + 7
Prove the following:
(1 + tanA · tanB)2 + (tanA − tanB)2 = sec2A · sec2B
Prove the following:
`(1 + cot + "cosec" theta)/(1 - cot + "cosec" theta) = ("cosec" theta + cottheta - 1)/(cottheta - "cosec"theta + 1)`
Prove the following:
`(tantheta + sectheta - 1)/(tantheta + sectheta + 1) = tantheta/(sec theta + 1)`
Prove the following:
`("cosec"theta + cottheta - 1)/( "cosec"theta + cot theta + 1) =(1-sintheta)/costheta`
Prove the following identity:
`(1 - sec theta + tan theta)/(1 + sec theta - tan theta) = (sec theta + tan theta - 1)/(sec theta + tan theta + 1)`
If θ lies in the first quadrant and 5 tan θ = 4, then `(5 sin θ - 3 cos θ)/(sin θ + 2 cos θ)` is equal to ______.