Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_1^2 (5x^2)/(x^2 + 4x + 3)`
उत्तर
Since the degree of numerator and denominator are same
∵ The fraction is improper. To make it proper, we have to divide 5x2 by x2 + 4x + 3.
`x^2+4x+3overline(")"5x^2 "(")5`
`" "5x2+20x+15`
`" "underline(-" "-" "- )`
`" "underline(- 20x - 15 )`
∴ `I = int_1^2 (5 + (-20 + 15)/ (x^2 + 4x + 3)) dx`
Let `(20x + 15)/(x^2 + 4x + 3)`
`= (20x + 15)/((x + 1)(x + 3)) ≡ A/(x+1) + B/(x + 3)`
⇒ 20x + 15 ≡ A (x + 3) + B (x + 1) ....(i)
Putting x = -1 in (i), we get
-20 + 15 = A (-1 + 3)
⇒ -5 = 2A
⇒ `A = (-5)/2`
Putting x = -3 in (i), we get
-60 + 15 = B (- 3+ 1)
⇒ -45 = - 2 B
⇒ `B = 45/2`
∴ `I = int_1^2 (5 + 5/ (2 (x + 1)) - 45/(2(x + 3))) dx`
`= [5x + 5/2 log (x + 1) - 45/2 log (x + 3)]_1^2`
`= 5 (2 - 1) + 5/2 [log 3 - log 2] - 45/2 [log 5 - log 4]`
`= 5 + 5/2 log 3/2 - 45/2 log 5/4`
`= 5 - 5/2 (9 log 5/4 - log 3/2)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫_0^(π/2)(sin^2 x)/(sinx+cosx)dx`
Evaluate :`int_0^(pi/2)(2^(sinx))/(2^(sinx)+2^(cosx))dx`
Evaluate the definite integral:
`int_(-1)^1 (x + 1)dx`
Evaluate the definite integral:
`int_1^2 (4x^3 - 5x^2 + 6x + 9) dx`
Evaluate the definite integral:
`int_0^(pi/4) sin2xdx`
Evaluate the definite integral:
`int_0^(pi/2) cos 2x dx`
Evaluate the definite integral:
`int_4^5 e^x dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integral:
`int_0^1 dx/sqrt(1-x^2)`
Evaluate the definite integral:
`int_0^1 dx/(1+x^2)`
Evaluate the definite integral:
`int_0^(pi/2) cos^2 xdx`
Evaluate the definite integral:
`int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integral:
`int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integral:
`int_0^1 x e^(x^2) dx`
Evaluate the definite integral:
`int_0^pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integral:
`int_0^1 (xe^x + sin (pix)/4)`
`int_1^(sqrt3)dx/(1+x^2) ` equals:
Evaluate : \[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\] .
`int_1^sqrt(3) (dx)/(1 + x^2)` equals
`int_6^(2/3) (dx)/(4 + 9x^2)` equals
Evaluate:
`int_0^π(sin^4x + cos^4x)dx`
Hence evaluate:
`int_(-2π)^(2π) (sin^4x + cos^4x)/(1 + e^x)dx`