Advertisements
Advertisements
प्रश्न
Factorise : a6 - 7a3 - 8
योग
उत्तर
We know that,
a3 + b3 = ( a + b )( a2 - ab + b2 ) ....(1)
a3 - b3 = ( a - b )( a2 + ab + b2 ) ....(2)
a6 - 7a3 - 8
= a6 - 8a3 + a3 - 8
= a3( a3 - 8) + 1( a3 - 8 )
= ( a3 + 1 )( a3 - 8 )
= ( a3 + 13 )( a3 - 23 )
= ( a + 1 )( a2 - a + 1 )( a - 2 )( a2 + 2a + 4 )
[ From(1) and (2) ]
= ( a + 1 )( a - 2)( a2 - a + 1 )( a2 + 2a + 4 )
shaalaa.com
Method of Factorisation : the Sum Or Difference of Two Cubes
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Factorise : a6 + 27b3
Factorise : a3 + 0.064
Factorise : a3 + 0.064
Factorise:
a4 - 343a
Factorise : 1029 - 3x3
Show that : 133 - 53 is divisible by 8
Factorise:
a3 - 27b3 + 2a2b - 6ab2
Factorise : 8a3 - b3 - 4ax + 2bx
Factorise : a - b - a3 + b3
Evaluate :
`[ 5.67 xx 5.67 xx 5.67 + 4.33 xx 4.33 xx 4.33 ]/[5.67 xx 5.67 - 5.67 xx 4.33 + 4.33 xx 4.33]`